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I. INTRODUCTION

This paper discusses the method of studying classical d+1 dimensional Ising Model as a d dimension quantum spin
system and vice-versa [5]. It can be shown, in the Transfer Matrix Formalism, that the two models are equivalent in
the time continuum limit of the classical Ising model. I will first discuss this mapping in the simplest context - the one
dimensional Ising model. Then we will look at the two dimensional Ising Model and show that it is equivalent to an
one dimensional quantum spin chain. I will also comment on the general correspondences of the critical phenomena
under this mapping. The reader can find detailed discussion of this topic in [5] and [6].

II. THE TRANSFER MATRIX FORMALISM FOR A SINGLE QUANTUM SPIN

This section basically derives the Feynman-Kac formula presented earlier in this course [3] by looking at the one
dimensional Ising chain. Recall that for time-independent systems, the Feynman-Kac formula links between statistical
mechanics and the quantum evolution of the system. The partition function is given by:

Z = Tr[e−βĤ ] =
∑

dx
∑

n

e−βEn〈x|n〉〈n|x〉 =
∑

dxG(x,−i~β; x, 0) (1)

Consider an one dimensional Ising chain with N sites and an Ising variable σz
n = ±1 on each site n with periodic

boundary condition. This is a purely statistical system with 2N configurations {σz
n}. The partition function is given

by:

Z =
∑

{σz
n}

e−βE({σz
n}) (2)

E({σz
n}) =

N
∑

n=1

(−Jσz
nσz

n+1 − hσz
n) (3)

where
∑

{σz
n} means

∏N
n=1

∑

σz
n=±1. The parameter h represents an external magnetic field. For convenience, I will

absorb the temperature into the couplings J and h. One should keep in mind that J, h ∝ 1
TIM

. This partition function

can be evaluated exactly following the original solution of Ising [1]. The trick is to write Z as a trace over a matrix
product, with one matrix for every site on the chain.

E({σz
n}) =

∑

n

L(n, n + 1) (4)

L(n, n + 1) =
J

2
[(σz

n − σz
n+1)

2 − h(σz
n + σz

n+1)] (5)

Z =
∑

{σz
n}

e−
P

n L(n,n+1) =
∑

{σz
n}

∏

n

e−L(n,n+1) =
∑

{σz
n}

∏

n

T (n, n + 1) (6)
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I should note that the energy expression in (5) is different from (3) by a constant but this is not important when
we calculate the partition function. The next step is to interpret T (n, n + 1) = e−L(n,n+1) as a matrix element of the
two different states located at site n and n+1. T (n, n + 1) ≡< σz

n|T|σz
n+1 >. T is named the Transfer Matrix. In

this problem, each Ising variable has two states (σz
n = ±1), so T is only a 2X2 matrix and is very easy to solve.

T (↑, ↑) = eh T (↑, ↓) = e−2J T (↓, ↑) = e−2J T (↓, ↑) = e−h (7)

T =

[

eh e−2J

e−2J e−h

]

(8)

The partition function can now takes the following form.

Z =
∑

σz
1=±1

· · ·
∑

σz
N

=±1

〈σz
1 |T|σz

2〉〈σ
z
2 |T|σz

3〉 · · · 〈σ
z
N |T|σz

N+1〉 (9)

=
∑

σz
1

〈σz
1 |T(

∑

σz
2

|σz
2〉〈σ

z
2 |)T(

∑

σz
3

|σz
3〉〈σ

z
3 |) · · · (

∑

σz
N

|σN 〉〈σN )|T|σz
N+1〉 (10)

=
∑

σz
1

〈σz
1 |T

N |σz
N+1〉 = (periodic)

∑

σz
1

〈σz
1 |T

N |σz
1〉 = Tr[TN ] (11)

If we imagine that the axis of the lattice is the time axis of quantum mechanics, then T carries information from
one time to a neighboring time. We can identify the transfer matrix as the time evolution operator for a quantum
system of a single spin. Recall that for time-independent Hamiltonian, the propagator has the form G(σz

f , tf , σz
i , ti) =

〈σz
f |e

− i
~

Ĥ(tf−ti)|σz
0〉 . We can associate the transfer matrix with the propagator in the following way:

T
N ↔ e

−i(tf −ti)

~
Ĥ = e−

ε
~

ĤN (12)

where ε = i
tf−ti

~
is the imaginary time step and Ĥ is the Hamiltonian of the single spin quantum system. Using the

fact that eε(O1+O2) = eεO1eεO2(1 + O(ε2)), we can write Eqn. (12) in the limit ε → 0 as

T = e−
ε
~

H ≈ 1 −
ε

~
H (13)

This is not true in general for the Ising system, but there exists a limit for the parameters J and h such that it is
consistent with the requirement ε → 0 in the quantum system. If we choose e−2J = ε and h = λe−2J = λτ where λ

is a fixed constant, then the transfer matrix becomes

T =

[

1 + λε ε

ε 1 − λε

]

= 1 + ε(σ̂x + λσ̂z) (14)

where σ̂x and σ̂z are the Pauli matrices. The limit ε → 0 corresponds to when J, h → 0 which is the low temperature
limit of the Ising system as J, h ∝ 1

TIM
. The quantum Hamiltonian is

Ĥ = σ̂x + λσ̂z (15)

Now that we have established the connection between the two systems, we can look at the correlation function of
the Ising system and its correspondences to the quantum system.

III. THE CORRESPONDENCES BETWEEN CLASSICAL STATISTICAL MECHANICS AND THE

EQUIVALENT EUCLIDEAN QUANTUM SYSTEM

In this section, I will use the classical Ising chain to show the general correspondences between the classical and
quantum system under this mapping. Although, this simple model does not have any phase transitions, it is still
worth examining as there are regions in which the correlation “length” ξ becomes very large; the properties of these
regions are very similar to those in the vicinity of the phase transition points in higher dimensions. For simplicity, I
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will only consider the case when h=0. For periodic boundary condition (σz
1 = σz

N+1), the partition function become
the trace of the transfer matrix.

Z =
∑

σz
1

〈σz
1 |T

N |σz
N+1〉 = Tr[TN ] (16)

= λN
1 + λN

2 (17)

where λ1 = 2e−J cosh(J) and λ2 = 2e−J sinh(J) is the eigenvalue of the transfer matrix. The two-point spin correlator

is defined to be

〈σz
i σz

j 〉 =
1

Z

∑

{σz
n}

e−E({σz
n})σz

i σz
j (18)

=
1

Z
Tr[Tiσ̂z

T
j−iσ̂zT

N−j ] (19)

The second line in the above equation assumes j ≥ i and σ̂z is the Pauli matrix. The trace can be evaluated in closed
form in the basis in which T is diagonal. The eigenvectors of T are | ↑x〉 and | ↓x〉 which is exactly that of the σ̂x

Pauli matrix. Using the matrix elements 〈↑x |σz| ↑x〉 = 〈↓x |σz | ↓x〉 = 0 and 〈↑x |σz| ↑x〉 = 〈↓x |σx| ↑x〉 = 1, we get

〈σz
i σz

j 〉 =
λ

N−j+i
1 λ

j−i
2 + λ

N−j+i
2 λ

j−i
1

λN
1 + λN

2

(20)

In the infinity chain limit (N → ∞) , the correlation becomes 〈σz
i σz

j 〉 = tanh(J)j−i. Again if we interpret the
lattice spacing as the imaginary time step τn = nε, then the correlation becomes

〈σz(τj)σ
z(τi)〉 = e−

|τj−τi|

ξ (21)

where ξ is the correlation length and is given by 1
ξ

= 1
a

ln cosh(K). There are two remarks I would like to make:

(1) The quantum Hamiltonian at zero external field can be written as H = ∆
2 σ̂x where ∆ = 2 e−2J

ε
. Then in the

limit when the classical and the quantum model coincide (J → ∞), the gap is inversely proportional to the correlation
length.

∆ =
1

ξ
(22)

As mentioned before, there is no phase transition in this lowest dimensional case, but from the above relation, the
critical behavior of the classical model corresponds exactly to that of the quantum model. When the correlation
length become infinite (ξ → ∞), ∆ becomes gapless. Although I have showed eqn (22) using the simplest model, this
result is general and can be applied to all other system using the same mapping. One of the main interests will be
the character of the lattice theory’s phase diagrams and the nature of their critical regions.

(2) My second remark is the correspondence in the correlation function. The time-ordered correlator, G, of the
quantum system in imaginary time is

G(τ1, τ2) =

{

1
ZTr[eH σ̂z(τ1)σ̂

z(τ2)] τ1 > τ2
1
ZTr[eH σ̂z(τ2)σ̂

z(τ1)] τ1 < τ2
(23)

where σ̂z(τ) is defined to be the imaginary time evolution. σ̂z(τ) ≡ eĤτ σ̂ze−Ĥτ Upon carrying the mapping described
above, one should find that

G(τ1, τ2) = lim
ε→0

〈σz(τ1)σ
z(τ2)〉 (24)

The correspondences between classical statistical mechanics and the equivalent Euclidean quantum system are
summarized in Table (1).
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Quantum System Statistical System
Ground state Equilibrium state
Propagator Correlation function
Mass gap Reciprocal of the correlation length

TABLE I: General correspondences between statistical and quantum system using the τ -continuum approach

FIG. 1: The space-time lattice of the two dimensional Ising model. s
z(n) and σ

z(n) are spin variables on adjacent spatial rows.
The argument n runs over the integers labeling the sites of a spatial row.

IV. THE TWO-DIMENSIONAL ISING MODEL AND THE QUANTUM SPIN CHAIN

We are now ready to study the two dimensional case and illustrate the general remarks of the previous section.
Consider a 2D classical Ising model with Ising variables σz(~n) = ±1 on each site ~n = (nx, nt). Denote the unit lattice
vector in the temporal direction by τ̂ and that in spatial direction by x̂ as shown in Fig. (1) The Action or the energy
function of this statistical system is:

S = −
∑

~n

[βτσz(~n + τ̂ )σz(~n) + βσz(~n + x̂)σz(~n)] (25)

The system is anisotropic with different temporal and spatial couplings (βτ and β). We will follow the same
procedure by first constructing the transfer matrix and then find the τ -continuum Hamiltonian of this model. It is
better to write the Action in a symmetric form.

S =
1

2
βτ

∑

~n

(σz(~n + τ̂ ) − σz(~n))2 − β
∑

~n

σz(~n + x̂)σz(~n)] (26)

Consider two neighboring spatial rows and label the spin variables in one row σz(nx)(≡ σz(nx, nt)) and those in
the next row sz(nx)(≡ σz(nx, nt + 1)). The argument nx runs from 1 to Mx, where Mx is the number of site on each
spatial row. The action can now be written as a sum over these rows

S =
∑

nt

L(nt + 1, nt) (27)

L(nt + 1, nt) =
1

2
βτ

∑

nx

(sz(nx) − σz(nx))2 −
1

2
β

∑

nx

(σz(nx + 1)σz(nx) + σz(nx + 1)sz(nx)) (28)

where I have suppressed the nt index. Again, one could define T (nt +1, nt) ≡ e−L(nt+1,nt) and identify it as a matrix
element 〈{sz(nx)}|T|{σz(nx)}〉. There are 2Mx possible spin configurations on each row, so the transfer matrix will
be a 2MxX2Mx matrix. We do not need to solve for T explicitly, instead one could look at the individual matrix
elements to come up with the scaling limit for βτmβ and the quantum Hamiltonian. For the diagonal element of the
matrix, sz(nx) = σz(nx) for all nx, and L becomes

L(0 flips) = −β
∑

nx

σz(nx + 1)σz(nx) (29)
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FIG. 2: The phase diagram of the classical two-dimensional Ising Model.

If there is one spin flipped between the two rows,then

L(1 flip) = 2βτ −
1

2
β

∑

nx

[σz(nx + 1)σz(nx) + sz(nx + 1)sz(nx)] (30)

and if there were n spin flips,

L(n flips) = 2nβτ −
1

2
β

∑

nx

[σz(nx + 1)σz(nx) + sz(nx + 1)sz(nx)] (31)

Next is to determine how the couplings βτ and β should be scaled so that the transfer matrix has the form T = eτĤ ≈
1 − τĤ as τ → ∞. Consider the various matrix elements of T

T(0 flips) = eβ
P

nx
σz(nx+1)σz(nx) ≈ 1 − τĤ |0 flips (32)

T(1 flip ) = e2βτ e
1
2 β

P

nx
[σz(nx+1)σz(nx)+sz(nx+1)sz(nx)] ≈ −τĤ |1 flip (33)

T(n flips) = e2nβτ e
1
2 β

P

nx
[σz(nx+1)σz(nx)+sz(nx+1)sz(nx)] ≈ −τĤ |n flips (34)

One can identity τ = e−2βτ and β = λe2βτ = λτ to obtain a condition that is consistent with τ → 0. Therefore, as
τ → 0, βτ → ∞. This tells us that in order for the physics to be the same in this lattice formulation,the couplings must
be adjusted appropriately. We see that taking a τ -continuum limit forces us to consider very anisotropic statistical
systems. The quantum Hamiltonian can be interpreted as an Ising model in a transverse magnetic field.

Ĥ = −
∑

m

σ̂x(m) − λ
∑

m

σz(m + 1)σz(m) (35)

In the next section, I will discuss the physical meaning of λ the phase diagram and critical region of the “classical”
two-dimensional Ising model.

V. CRITICAL REGION OF THE CLASSICAL TWO-DIMENSIONAL ISING MODEL

The two-dimensional Ising model has a phase transition. In the space of the parameters βτ , β there is a critical
curve which separates the ordered (ferromagnetic) and disordered (paramagnetic) phases. This is shown in Fig. (2).
The critical curve is given by [2]

sinh(2βτ ) sinh(2β) = 1 (36)

The form of the critical curve in the limit as βτ → ∞ is β = e−2βτ which has the same scaling relation found earlier
except that λ has the specific value of 1. This shows that we can view the τ -continuum version of the theory as a
natural limiting case of the general model, and that the parameter λ can be used to label its phase. One can then
relate the temperature of the Ising model to a unique quantum model with a corresponding value of λ. If λ > 1(< 1),
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the Ising model lies in the disordered(ordered) phase. So one can associate TIM ∝ 1
λ
, where the critical temperature

corresponds to when λ = 1.

VI. CONCLUSION

I have shown how zero and one dimensional quantum Ising model is equivalent to one and two dimensional statistical
Ising model with one dimension being identified as the evolution in time. These mapping can be generalized to other
systems with more than one component to the Ising variables. The general relations between the classical and the
quantum system discussed in section three remain unchanged. In particular, the relation that the mass gap ∝ 1

ξ
allow

one to identify the critical behavior from one system to another. However, when studying the classical system from
the quantum side, one can only obtain results for highly anisotropic lattice system.
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