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Abstract 
 The driven Van der Pol oscillator displays entrainment, quasiperiodicity, and 
chaos. The characteristics of these different modes are discussed as well as the transitions 
between the modes. Entrainment in collections of coupled oscillators is discussed with 
reference to  synchronization of firefly flashing within a swarm. 
 
Introduction 
 One of the first recorded observations of a nonlinear effect in dynamics was made 
by Christiaan Huygens in 1665. He wrote in a letter about observing two pendulum 
clocks that he had made hanging on a wall. He noticed that they swung at the same 
frequency and were always in antiphase. He tried perturbing one of the pendulums but it 
eventually went back into antiphase with the other and they again swung at the same 
frequency. He took one of the clocks and put it on the opposite wall of the room, and the 
clocks gradually fell out of step. When the pendulums were “coupled” through contact 
with the same wall, they eventually fell in step. This phenomenon is called entrainment. 

Entrainment is a property of coupled oscillators. The simplest case occurs when 
the coupling is only one-way; the frequency of one oscillator is constant, and entrainment 
occurs when the other matches this frequency. For example, if one of Huygens' pendulum 
bobs had infinite mass, its motion would be unaffected by the other pendulum.  One can 
model this situation as a forced single oscillator.  
 Entrainment of this type is a common phenomenon in nature. It is also a useful 
control mechanism for some systems. For example, a pacemaker entrains the nerve cells 
of a heart to prevent heart attacks. A powerful triode generator, a now antique device that 
produces a periodically alternating electric current, can be entrained by a less powerful 
triode generator that has a more precise frequency. Circadian rhythms are an example of 
how the day light cycle drives sleeping cycles in plants and animals. 

I will investigate the forced Van der Pol equation as an example of this one-way 
coupling. Later, I will discuss a system of many coupled oscillators, a swarm of fireflies. 
 
Part I: Van der Pol oscillator and Driven Entrainment 

The Van der Pol equation is 
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or, in the first order form, 
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 When x is smaller than 1, then the system experiences negative damping and its 
amplitude increases. For x greater than 1, damping causes the amplitude to decrease. So 

 



 

the entire phase plane is a basin of attraction for the stable limit cycle. When ε is small, 
approximate perturbation methods show that the limit cycle is circular. For larger ε, 
numerical solutions show the limit cycles in figure 1. 

 
Because the Van der Pol equation  

exhibits oscillation no matter what its initial 
conditions, it is called self-exciting. 
  

 

 

 
 

 
Entrainment can be observed in the 
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 In figure 3, there are ten cycles in 52
ω=1.2, confirming that the system is entrain

A related phenomenon to entrainme
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Figure 1: Limit Cycles for Van der Pol 
Oscillator with ε=0.5, 1, 1.5, 2, 2.5 going
from the most circular curve to the 
curviest.
forced Van der Pol equation: 
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Figure 2: Entrainment: Limit Cycle 
for driven Van der Pol Oscillator with
ε=0.25, f=3, ω=1.2 
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Figure 3: Entrainment: Time series 
for driven Van der Pol Oscillator with
ε=0.25, f=3, ω=1.2 
 time units, giving an angular frequency of 
 at the driving frequency. 

 is quasiperiodicity. This occurs when the 
. The natural frequency of the system 
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ies with time. The phase plain trajectory is 



 

 

 
 

ower spectrum. 

Figure 4: Quasiperiodicity: Phase 
trajectory for driven Van der Pol 
Oscillator with ε=0.25, f=0.4, ω=1.2 

Figure 5: Quasiperiodicity: Time 
series for driven Van der Pol 
Oscillator with ε=0.25, f=0.4, ω=1.2 

It is plain that the amplitude is changing, but to see the evidence for competing 
frequencies, it is best to look at a p

 

 

Figure 6: Quasiperiodicity: Power spectrum for driven Van der Pol Oscillator with ε=0.25, f=3, 
ω=1.2.  On x-axis, 256 corresponds to a frequency of 1. 

 The large peak corresponds to ωo = 1. The peak to its right corresponds to ω = 
1.2. There are other peaks corresponding ∆ω=0.2. 
 The forcing amplitude for the transition from quasiperiodicity to entrainment can 
be calculated numerically. Figure 7 is the same principle as a bifurcation diagram. For a 
given forcing amplitude, the forced Van der Pol equations are numerically solved, and 
after time is allowed for transients to disappear the angular velocity of the system is 
measured whenever the phase of the driving force repeats, i.e. whenever t=2*π/ω. If the 
system has a period equal to the driving frequency, a single point appears for that forcing 
amplitude. If a discrete number of points appear, then the system is oscillating at that 
multiple of the period of the driving force. Figure 7 shows that entrainment occurs for 
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Figure 7: Measurements of the angular velocity (y) taken when the phase of the driving force is 
zero. ε=0.25, ω=1.2.  The x-axis is the forcing amplitude, f. 

 
 For frequencies less than the transition frequency, the system isn’t oscillating at 
the drive frequency. The ratio of the total period for the system to repeat (approximately 
40 seconds in figure 5) to the driving period is an irrational number, as indicated by the 
Poincaré diagram, which is a continuous curve. 

 
 
Chaos in the Van der Pol Oscillator 
 Chaos can occur in the Van der Pol osci
small set of parameters. The Lyapunov exponen
indicates chaotic motion) when ε=3, ω=1.788 a
Poincaré plot in figure 11 indicates that the mot

 

Figure 8: Quasiperiodicity: Poincaré 
section for driven Van der Pol 
Oscillator with ε=0.25, f=0.4, ω=1.2 
llator, although this occurs for only a 
t is largest (positive Lyapunov exponent 

nd f=5 [1]. The fractal nature of the 
ion is chaotic. 



 

 
 
 
  
 
 

 

 

Figure 9: Chaos: Phase trajectory for 
driven Van der Pol Oscillator with 
ε=3, f=5, ω=1.788 

Figure 10: Chaos: Time series for 
driven Van der Pol Oscillator with 
ε=3, f=5, ω=1.788.  Both have initial 
velocity of zero. Initial position of 
black line is 2.05, of gray is 2.09 

Figure 11 a: Chaos: The Poincaré section for driven Van der Pol Oscillator with ε=3, f=5, 
ω=1.788.   Figure 11 b: Detail of the fractal nature of the section. 

 
 
 

Part II: Fireflies and Coupled Entrainment 
 In nature, systems where the effect of the coupling is on both oscillators are much 
more common. For example, when someone is jogging, they swing their arms in time 
with their legs. It feels unnatural to have your arms swing at a different rate. When 
multiple oscillators are present, entrainment can still occur. Depending on how the 
oscillators are coupled, more complex patterns can occur as well. 

 



 

 

 One of the most interesting examples of a large system of coupled oscillators are 
the firefly swarms of south Asia. At nightfall, large numbers of fireflies gather in trees. 
At first, the timing of their flickering is random and scattered, but as time passes the 
fireflies become more and more synchronized until all of them flash in unison. 
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