
Phonons in a one-dimensional crystal

Let us consider the following problem: we have a one-dimensional crystal, which we can think
of as a linear chain of equally-spaced identical atoms of mass m. Let a be the equilibrium distance
between consecutive atoms. Then, at equilibrium, the position of the nth atom of the chain will be

x(0)
n = na

Let us assume that there are N atoms in the chain, so that n = 1, 2, ..., N .
We would like to answer the following question: if the atoms are constrained to move along the

x-axis, what are the normal frequencies of oscillations of this system? These are called longitudinal
phonons, where longitudinal (as opposed to transversal) shows that we are only looking for oscillations
along the x-axis. “Phonons” is the name given to such oscillations of a solid. Strictly speaking,
one needs to treat them quantum mechanically, but classical mechanics already tells us what their
allowed frequencies are, just like we discussed for small molecules. Understanding these phonons is
very important in solid state physics. For example, as you may know, when the solid is heated up,
its atoms start oscillating around their equilibrium position – for instance, this is what is responsible
for an increased resistance of a metal, as the temperature is increased. As the electrons that make
up the electric current try to move through the material, if the motion of the atoms is more violent
(which is true at higher temperatures), the chances for electrons to scatter off these moving atoms
increase. After such a scattering, the electron will generally move in a different direction than the
one of the current. If there was no applied voltage, the current would become zero very fast because
after a very short time the electrons would be moving every which way and the average current in any
direction would be zero. If we want a current, we need to apply a voltage, so that even if an electron
is scattered in a “wrong” direction after it hits a vibrating nucleus, the applied electric field will
re-accelerate it in the desired direction so that we do have an overall current. If we know the phonon
frequencies and have some ideas about the scattering processes, we can calculate how the resistance
should increase with temperature (and test to see whether experiments agree with the calculations).
For simple metals at fairly high temperatures, resistance increases lineary with temperature, as one
can show quite easily. Figuring out such properties of materials is part of the condensed matter, or
solid state physics – something very near and dear to my heart. In fact, in recent years my main
research interest has been to understand precisely such interactions between electron and phonons
(it turns out that sometimes these quantum objects can combine into a new object, which is called a
polaron, and which is a superposition of the eletron plus various numbers of phonons. But I digress).

Back to classical mechanics – let’s find these frequencies. The Lagrangian of this system is

L =
N

∑

n=1

mẋ2
n

2
− U(x1, ..., xN )

Let us use a simple model for the interaction potential. First, we assume that each atom interacts
only with its two neighboring atoms, which implies

U(x1, ..., xN ) =
N−1
∑

n=1

Upair(xn+1 − xn)

where Upair(xn+1 − xn) describes the interaction between atoms n and n + 1. Now, we know that if
we are interested in small oscillations, we can Taylor expand this to obtain

Upair(x) =
K

2
(x − a)2
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which, indeed, has a minimum at the equilibrium length x = a. Then we have a simplified version
of the Lagrangian, valid near the equilibrium positions:

L =
N

∑

n=1

mẋ2
n

2
−

N−1
∑

n=1

K

2
(xn+1 − xn − a)2

x n−1 x n

(n−1)a na (n+1)a (n+2)a

x xn+1 n+1

nun−1 u un+1 un+2

in motion

at equilibrium

We can make things easier if instead of xn, we use the generalized coordinates to be un = xn−x(0)
n =

xn − na, i.e. the displacement of each atom from its equilibrium position (see the figure for an
illustration). With these new variables, we have

L =
N

∑

n=1

mu̇2
n

2
−

N−1
∑

n=1

K

2
(un+1 − un)2

The EL equation for un then is:

mün = −K(2un − un−1 − un+1)

or, if we define ω0 =
√

K/m, we have:

ün = −ω2
0(2un − un−1 − un+1)

and we have one such equation for each value of n = 1, 2, ..., N . In fact, this is not quite true: you
can convince yourselves that for n = 1 and n = N (i.e, the end atoms of the chain) the equation
must be somewhat different, simply because these end atoms are missing the neighbor either to left,
or right. We will see a bit later how we deal with those two particular atoms.

We have already discussed in class how to deal with the time dependence: in each normal mode
all atoms will oscillate in phase, and therefore we must have

un(t) = an cos(ωt + φ)

where the allowed values of ω are the natural frequencies we are looking for. If we plug this “guess”
into the equation of motion, we find that ün = −ω2un, and therefore the equation of motion can be
rewritten as

(2ω2
0 − ω2)an = ω2

0(an+1 + an−1)

This is a recurrence relation, and we need a way to solve it. Some of you may be familiar with Fourier
transforms and then you already know what we should do. If you are not familiar with those, look
at the end of these notes for a way of dealing with such recurrence relations. We assume the solution
to be of the form

an = A cos(nqa + β)
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where q is a number called “wave-vector”, and β is some phase. With this “guess”, the recurrence
relation becomes

(2ω2
0 − ω2)A cos(nqa + β) = ω2

0 {A cos[(n + 1)qa + β] + A cos[(n − 1)qa + β]}

Using the relation cos α + cos β = 2 cos α+β

2
cos α−β

2
→ cos[(n + 1)qa + β] + cos[(n − 1)qa + β] =

2 cos(nqa + β) cos(qa) and therefore we find:

2ω2
0 − ω2 = 2ω2

0 cos(qa) → ω2 = 4ω2
0

1 − cos(qa)

2
→ ω = 2ω0

∣

∣

∣

∣

sin
qa

2

∣

∣

∣

∣

Thus, we found that for a given value of q, the frequency of the oscillations is

ωq = 2ω0 sin
qa

2
→ u(q)

n (t) = cos(ωqt + φq) cos(qna + βq)

(we use the superscript to remind ourselves that this is the normal solution for a given q). The
last question we need now to answer is what values can q take? The answer to this comes from the
condition that this solution describes properly the behavior of the end atoms of the chain. There are
several possibilities for these end atoms; for instance, periodic boundary conditions are very popular
and useful in solid state – in this case we would ask that the chain is circular and atom 1 has atom
N as its left-side neighbor. This imposes certain periodicities satisfied only by certain q values – if
you take the intro to solid-state course, you’ll find out how to do that.

However, for today, let us consider the case where the end atoms are not allowed to move, i.e.
u1(t) = uN(t) = 0. In this case, only the rest N − 2 atoms move, i.e. there are N − 2 degrees of
freedom (for longitudinal motion) and we expect N − 2 distinct natural frequencies. (If you wonder
why we don’t have a pure translational mode, the reason is that we fixed the ends of the chain).
From

u1(t) = cos(ωqt + φq) cos(qa + βq) = 0 for all times → cos(qa + βq) = 0 → βq =
π

2
− qa

This condition, therefore, fixes the value of β. The second condition is now:

uN(t) = cos(ωqt + φq) cos(Nqa +
π

2
− qa) = 0 for all times → (N − 1)qa = jπ → q =

jπ

(N − 1)a

where j can be any non-zero integer (if j = 0 → q = 0 → ωq = 0 which is not a vibration). Since
the allowed values of q are indexed by the integer j, we can rewrite the normal modes in terms of it.
Collecting all results, we have the motion of the nth atom, in the jth mode, to be:

u(j)
n (t) = sin

(

jπ
n − 1

N − 1

)

cos(ωjt + φj), where ωj = 2ω0

∣

∣

∣

∣

∣

sin

(

jπ

2(N − 1)

)
∣

∣

∣

∣

∣

where j is an integer number. This might suggest that there is an infinite number of solutions, one for
each possible j. We know this cannot be true; the problem has only N − 2 degrees of freedom (there
are N atoms, but only N −2 of them are allowed to move in the x-direction). Careful considerations
show that indeed only the values j = 1, 2, .., N−2 give distinct solutions. You can convince yourselves
that the solution given by any other j is equivalent to one of these because sin and cos are periodic
functions.

To conclude, the chain with N atoms and fixed ends has N −2 distinct frequencies of longitudinal
oscillations, given by ωj with j = 1, 2, ..., N − 2.

3



Such calculations can be generalized to 3-dimensional crystals, and one can consider more com-
plicated unit cells as well. These normal frequencies are called “phonons” and they can be measured
experimentally, for instance by scattering neutrons off the lattice and looking at what happens (mind
you, we need to use some quantum mechanics because atoms and neutrons are quantum objects, but
things proceed in a fairly similar fashion there). Such measurements were pioneered by (amongst
others) the Canadian Bertram Brockhouse, who won a Nobel prize in 1994 for this work.

Recurrence relations:

Let us consider recurrence relations of the general form αan = an−1 + an+1. In particular, for our
problem we have α = (2ω2

0−ω2)/ω2
0. There are many ways to deal with such equations. One possible

way is to the following: let’s form the system of equations
{

an+1 = αan − an−1

an = an
→

(

an+1

an

)

=

(

α −1
1 0

) (

an

an−1

)

→

(

an+1

an

)

=

(

α −1
1 0

)n (

a1

a0

)

Let λ+ and λ−, respectively û+ and û− be the eigenvalues and eigenvectors of this 2 × 2 matrix:
(

α −1
1 0

)

û± = λ±û±

(you can easily find them by standard linear algebra methods). We know then that any vector can
be written as a linear combination of these 2 eigenvectors. In particular, we must have

(

a1

a0

)

= a+û+ + a−û−

where a+ and a− are some constants. If we now put this into the recurrence relation and use the fact
that every time the matrix acts on one of its eigenvectors, it just multiplies it by the corresponding
eigenvalue, we find the general solution of the recurrence relation to be:

(

an+1

an

)

= a+λn
+û+ + a−λn

−
û− = a+en ln λ+û+ + a−en ln λ

−û−

There are two possibilities now: depending on the value of α, the two eigenvalues are both real
numbers, in which case the recurrence relation shows that an increases or decreases exponentially
with n. This is not an acceptable solution, generally speaking, except maybe near ends of the chain.

The more interesting case is when λ+ = (λ−)∗ = eiφ, i.e. the eigenvalues are complex conjugate
numbers (they must have unit amplitude since the determinant of the 2×2 matrix is 1, which means
that λ+λ− = 1). In this case, ln λ+ = − ln λ− = iφ, and you see that

an ∼ aeinφ + be−inφ ∼ A cos(nφ + β)

which is precisely the type of solution we used. All we did was to “rename” φ = qa in the notes, this
being a useful thing to do, as you’ll find out when you take a course in solid-state physics. You see
that the value of φ depends on the value of α which enters the 2 × 2 matrix. This gives the relation
between ωq and q, which is also called a “dispersion relation”.
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