Brief review of some necessary math

1 Vectors

Scalars: mathematical objects defined by a magnitude (one number). Examples are volume, mass, charge etc. Usual notation are letters: V, m, Q etc. Mathematical operations involving scalars are addition, subtraction, multiplication and division by another scalar. It is advisable to not divide by 0 . Vectors: mathematical objects defined by a magnitude and a direction. Examples are position \vec{r}, speed \vec{v}, momentum \vec{p}, force \vec{F} etc. The little arrow is very important, since it distinguishes a vector from a scalar.
A vector can be expressed in terms of its components in a coordinate system. We use a right-handed, three-dimensional Cartesian system, and write (see Fig. 1):

$$
\vec{A}=\left(A_{x}, A_{y}, A_{z}\right)
$$

Fig 1. Right-handed Cartesian coordinate system.

If all vectors are decomposed with respect to the same coordinate system, we can define:

- addition of vectors: $\vec{A}+\vec{B}=\left(A_{x}+B_{x}, A_{y}+B_{y}, A_{z}+B_{z}\right)=\vec{B}+\vec{A}$;
- multiplication by a constant $c: c \vec{A}=c\left(A_{x}, A_{y}, A_{z}\right)=\left(c A_{x}, c A_{y}, c A_{z}\right)$;
- dot product $\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}=\vec{B} \cdot \vec{A}$;
- cross product $\vec{A} \times \vec{B}=\left(A_{y} B_{z}-B_{y} A_{z}, A_{z} B_{x}-B_{z} A_{x}, A_{x} B_{y}-B_{x} A_{y}\right)=-\vec{B} \times \vec{A}$;

We introduce unit vectors (versors) for the three axis:

$$
\vec{e}_{x}=(1,0,0) ; \quad \vec{e}_{y}=(0,1,0) ; \quad \vec{e}_{z}=(0,0,1) ;
$$

Then, we can also write

$$
\vec{A}=\left(A_{x}, A_{y}, A_{z}\right)=A_{x} \vec{e}_{x}+A_{y} \vec{e}_{y}+A_{z} \vec{e}_{z}
$$

The magnitude of a vector \vec{A} is denoted by $|\vec{A}|$ or simply $A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$. Clearly, $|\vec{A}|^{2}=\vec{A} \cdot \vec{A}$. The angle θ between two vectors \vec{A} and \vec{B} is given by

$$
\cos \theta=\frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|} ; \quad \quad \sin \theta=\frac{|\vec{A} \times \vec{B}|}{|\vec{A}||\vec{B}|}
$$

The cross-product can be rewritten in the equivalent form

$$
\vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\vec{e}_{x} & \vec{e}_{y} & \vec{e}_{z} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right|=\left(A_{y} B_{z}-B_{y} A_{z}\right) \vec{e}_{x}+\left(A_{z} B_{x}-B_{z} A_{x}\right) \vec{e}_{y}+\left(A_{x} B_{y}-B_{x} A_{y}\right) \vec{e}_{z}
$$

Identities we will use later on:

$$
\begin{aligned}
\vec{A} \cdot(\vec{B} \times \vec{C}) & =\left|\begin{array}{lll}
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z} \\
C_{x} & C_{y} & C_{z}
\end{array}\right|=\vec{B} \cdot(\vec{C} \times \vec{A})=\vec{C} \cdot(\vec{A} \times \vec{B}) \\
\vec{A} & \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})
\end{aligned}
$$

2 Cartesian, Cylindrical and Spherical Coordinates

Let $\vec{A}=A_{x} \vec{e}_{x}+A_{y} \vec{e}_{y}+A_{z} \vec{e}_{z}$ be the decomposition of a vector in Cartesian coordinates (Fig. 1). There are two other coordinate systems that may be more convenient, depending on the symmetry of the problem considered:
a) cylindrical coordinates (Fig. 2). We keep the z-axis projection, but in-plane we choose two new unit vectors: \vec{e}_{ρ} - which is pointing in the radial direction (the direction in which ρ alone increases, while ϕ, z are unchanged) and \vec{e}_{ρ} - which is pointing in the tangential direction (the direction to move to increase ϕ, while keeping ρ, z unchanged). Therefore:

$$
\vec{A}=A_{\rho} \vec{e}_{\rho}+A_{z} \vec{e}_{z}
$$

where

$$
\left\{\begin{array}{l}
\vec{e}_{\rho}=\cos \phi \vec{e}_{x}+\sin \phi \vec{e}_{y} \\
\vec{e}_{\phi}=-\sin \phi \vec{e}_{x}+\cos \phi \vec{e}_{y} \\
\vec{e}_{z}=\vec{e}_{z}
\end{array}\right.
$$

and

$$
|\vec{A}|^{2}=A_{\rho}^{2}+A_{z}^{2}
$$

Fig 2. Cylindrical coordinate system.
b) spherical coordinates (Fig. 3). Here we have 3 new unit vectors:

Fig 3. Spherical coordinate system. \vec{e}_{r} - points in the direction in which r, the distance from origin, increases while keeping ϕ, θ are unchanged; and similarly, $\vec{e}_{\phi}, \vec{e}_{\theta}$ which point in the direction which would increase only ϕ, respectively only θ, while keeping the other coordinates fixed. Then:

$$
\vec{A}=A_{r} \vec{e}_{r}
$$

where

$$
\left\{\begin{array}{l}
\vec{e}_{r}=\sin \theta \cos \phi \vec{e}_{x}+\sin \theta \sin \phi \vec{e}_{y}+\cos \theta \vec{e}_{z} \\
\vec{e}_{\theta}=\cos \theta \cos \phi \vec{e}_{x}+\cos \theta \sin \phi \vec{e}_{y}-\sin \theta \vec{e}_{z} \\
\vec{e}_{\phi}=-\sin \phi \vec{e}_{x}+\cos \phi \vec{e}_{y}
\end{array}\right.
$$

and

$$
|\vec{A}|=A_{r}
$$

3 Speed and acceleration vectors in various coordinate systems

Notation:

$$
\frac{d f(t)}{d t}=\dot{f}(t) \quad \frac{d^{2} f(t)}{d t^{2}}=\ddot{f}(t)
$$

(i) Cartesian coordinates: the triad $\left(\vec{e}_{x}, \vec{e}_{y}, \vec{e}_{z}\right)$ is fixed, therefore:

$$
\begin{gather*}
\vec{r}(t)=x(t) \vec{e}_{x}+y(t) \vec{e}_{y}+z(t) \vec{e}_{z} \tag{1}\\
\vec{v}(t)=\frac{d \vec{r}(t)}{d t}=\dot{x}(t) \vec{e}_{x}+\dot{y}(t) \vec{e}_{y}+\dot{z}(t) \vec{e}_{z} ; \quad|\vec{v}|^{2}=(\dot{x})^{2}+(\dot{y})^{2}+(\dot{z})^{2} \tag{2}
\end{gather*}
$$

$$
\begin{equation*}
\vec{a}(t)=\frac{d \vec{v}(t)}{d t}=\frac{d^{2} \vec{r}(t)}{d t^{2}}=\ddot{x}(t) \vec{e}_{x}+\ddot{y}(t) \vec{e}_{y}+\ddot{z}(t) \vec{e}_{z} \tag{3}
\end{equation*}
$$

(ii) Cylindrical coordinates: \vec{e}_{ρ} and \vec{e}_{ϕ} change in time, because the angle $\phi(t)$ changes as the vector $\vec{r}(t)$ varies. We have:

$$
\left\{\begin{array}{l}
\dot{\vec{e}_{\rho}}=-\sin \phi \dot{\phi} \vec{e}_{x}+\cos \phi \dot{\phi} \vec{e}_{y}=\dot{\phi} \vec{e}_{\phi} \\
\vec{e}_{\phi}=-\cos \phi \dot{\phi} \vec{e}_{x}-\sin \phi \dot{\phi} \vec{e}_{y}=-\dot{\phi} \vec{e}_{\rho}
\end{array}\right.
$$

Then

$$
\begin{gather*}
\vec{r}(t)=\rho(t) \vec{e}_{\rho}+z(t) \vec{e}_{z} \tag{4}\\
\vec{v}(t)=\dot{\vec{r}}(t)=\dot{\rho} \vec{e}_{\rho}+\rho \dot{\phi} \vec{e}_{\phi}+\dot{z} \vec{e}_{z} ; \quad|\vec{v}|^{2}=\dot{\rho}^{2}+\rho^{2} \dot{\phi}^{2}+\dot{z}^{2} \tag{5}\\
\vec{a}(t)=\ddot{\vec{r}}(t)=\left(\ddot{\rho}-\rho \dot{\phi}^{2}\right) \vec{e}_{\rho}+(2 \dot{\rho} \dot{\phi}+\rho \ddot{\phi}) \vec{e}_{\phi}+\ddot{z}(t) \vec{e}_{z} \tag{6}
\end{gather*}
$$

(iii) Spherical coordinates: all three unit vectors change in time as $\vec{r}(t) x$ varies. We have:

$$
\left\{\begin{array}{l}
\dot{\vec{e}_{r}}=\dot{\theta} \vec{e}_{\theta}+\sin \theta \dot{\phi} \vec{e}_{\phi} \\
{\overrightarrow{\vec{e}_{\theta}}}_{\theta}=-\dot{\theta} \vec{e}_{r}+\cos \theta \dot{\phi} \vec{e}_{\phi} \\
\dot{\vec{e}_{\phi}}=-\dot{\phi}\left(\sin \theta \vec{e}_{r}+\cos \theta \vec{e}_{\theta}\right)
\end{array}\right.
$$

Then

$$
\begin{gather*}
\vec{r}(t)=r(t) \vec{e}_{r} \tag{7}\\
\vec{v}(t)=\dot{r} \vec{e}_{r}+r \dot{\theta} \vec{e}_{\theta}+r \sin \theta \dot{\phi} e_{\phi} ; \tag{8}\\
\vec{a}(t)=\left[\ddot{r}-r \dot{\theta}^{2}=\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2} \sin ^{2} \theta\right] \vec{e}_{r}+\left[r \ddot{\theta}+2 \dot{r} \dot{\theta}-r \dot{\phi}^{2} \sin \theta \cos \theta\right] \vec{e}_{\theta}+[r \ddot{\phi} \sin \theta+2 \dot{r} \dot{\phi} \sin \theta+2 r \dot{\phi} \dot{\theta} \cos \theta] \vec{e}_{\phi} \tag{9}
\end{gather*}
$$

Luckily, we will not need to use the accelerations in this course, only the speeds.

4 Derivatives

a) function of one variable: Let $f(x)$ be some function of x. Then, we define:

$$
\frac{d f(x)}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

Some examples:

$$
\begin{gathered}
\frac{d x^{n}}{d x}=n x^{n-1} ; \frac{d \cos (x)}{d x}=-\sin x ; \frac{d \sin x}{d x}=\cos x \\
\text { chain rule: } \frac{d f(g(x))}{d x}=\frac{d f}{d g} \frac{d g}{d x}
\end{gathered}
$$

Fig 4. Derivative of a function, and extremum conditions.

Functions we encounter in physical problems are usually well-behaved (continuous etc), and derivatives are well defined. The geometric meaning of the derivative is that it equals the slope $\tan \alpha$ of the function, at the point of interest (see Fig. 4). It follows that a local extremum (maximum or minimum) condition is $\alpha=0$, i.e.

$$
\frac{d f(x)}{d x}=0
$$

Whether this local extremum is a maximum or minimum depends on the sign of the second derivative: if $\frac{d^{2} f(x)}{d x^{2}}<0 \rightarrow$ local maximum, if $\frac{d^{2} f(x)}{d x^{2}}>0 \rightarrow$ local minimum.
b) function of several variables: assume a function of several variables $f\left(q_{1}, \ldots, q_{N}\right)$. We can define two types of derivatives, partial and total.

The partial derivative ∂ with respect to one variable q_{i} is given by the variation in the function when only that particular variable is allowed to change by a small amount:

$$
\frac{\partial f}{\partial q_{i}}=\lim _{\Delta q_{i} \rightarrow 0} \frac{f\left(q_{1}, \ldots, q_{i}+\Delta q_{i}, \ldots, q_{N}\right)-f\left(q_{1}, \ldots, q_{i}, \ldots, q_{N}\right)}{\Delta q_{i}}
$$

In other words, it is similar to taking a normal derivative when we assume that all other variables are simple constants.

Example: let

$$
f(x, y, z, t)=3 t x^{2}+4 x y+5 y z+2\left(y^{2}+z^{2}\right)+(x+y+2 z) \sin t
$$

then
$\frac{\partial f}{\partial x}=6 t x+4 y+\sin t ; \quad \frac{\partial f}{\partial y}=4 x+4 y+\sin t ; \quad \frac{\partial f}{\partial z}=5 y+4 z+2 \sin t ; \quad \frac{\partial f}{\partial t}=3 x^{2}+(x+y+2 z) \cos t$
However, some of the arguments of a function may be themselves dependent on some other variables. For instance, let us consider a function $g\left(q_{1}, \ldots q_{N}, t\right)$ where $q_{1}, \ldots q_{N}$ are themselves functions of the variable t. Then, we can define the total derivative with respect to t as being given by the total variation of the function when we allow t to vary by a small amount:

$$
\frac{d g}{d t}=\lim _{\Delta t \rightarrow 0} \frac{g\left(q_{1}(t+\Delta t), \ldots, q_{N}(t+\Delta t), t+\Delta t\right)-g\left(q_{1}(t), \ldots, q_{N}(t), t\right)}{\Delta t}
$$

This is very different from the partial derivative with respect to t, when we keep q_{1}, \ldots, q_{N} unchanged:

$$
\frac{\partial g}{\partial t}=\lim _{\Delta t \rightarrow 0} \frac{g\left(q_{1}(t), \ldots, q_{N}(t), t+\Delta t\right)-g\left(q_{1}(t), \ldots, q_{N}(t), t\right)}{\Delta t}
$$

From the chain rule, it follows that

$$
\frac{d g}{d t}=\sum_{i=1}^{N} \frac{\partial g}{\partial q_{i}} \frac{d q_{i}}{d t}+\frac{\partial g}{\partial t}
$$

Example: consider

$$
g(x, y)=3 x+2 x y
$$

Then

$$
\frac{\partial g}{\partial x}=3+2 y ; \quad \frac{\partial g}{\partial y}=2 x ; \quad \frac{\partial g}{\partial t}=0
$$

and as a result:

$$
\frac{d g}{d t}=(3+2 y) \frac{d x}{d t}+2 x \frac{d y}{d t}
$$

E.g., if $x(t)=3 t+2$ and $y(t)=t^{2}$, it follows that

$$
\frac{d g}{d t}=(3+2 y) 3+2 x \cdot 2 t=9+8 t+18 t^{2}=\frac{d}{d t}\left(3[3 t+2]+2[3 t+2] t^{2}\right)
$$

If a function has no explicit dependence on a variable (i.e., no term in the function contains that variable), then the partial derivative of the function with respect to that variable is zero. For instance, in the last example $\partial g / \partial t=0$. However, since both x and y depend on t, we say that the function g depends implicitly on t, and its total derivative with respect to t need not be zero.

