
Brief review of some necessary math

1 Vectors

Scalars: mathematical objects defined by a magnitude (one
number). Examples are volume, mass, charge etc. Usual no-
tation are letters: V,m,Q etc. Mathematical operations in-
volving scalars are addition, subtraction, multiplication and
division by another scalar. It is advisable to not divide by 0.
Vectors: mathematical objects defined by a magnitude and
a direction. Examples are position ~r, speed ~v, momentum
~p, force ~F etc. The little arrow is very important, since it
distinguishes a vector from a scalar.
A vector can be expressed in terms of its components in a
coordinate system. We use a right-handed, three-dimensional
Cartesian system, and write (see Fig. 1):

~A = (Ax, Ay, Az)
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Fig 1. Right-handed Cartesian coordinate

system.

If all vectors are decomposed with respect to the same coordinate system, we can define:
- addition of vectors: ~A + ~B = (Ax + Bx, Ay + By, Az + Bz) = ~B + ~A;

- multiplication by a constant c: c ~A = c(Ax, Ay, Az) = (cAx, cAy, cAz);

- dot product ~A · ~B = AxBx + AyBy + AzBz = ~B · ~A;

- cross product ~A × ~B = (AyBz − ByAz, AzBx − BzAx, AxBy − BxAy) = − ~B × ~A;
We introduce unit vectors (versors) for the three axis:

~ex = (1, 0, 0); ~ey = (0, 1, 0); ~ez = (0, 0, 1);

Then, we can also write

~A = (Ax, Ay, Az) = Ax~ex + Ay~ey + Az~ez

The magnitude of a vector ~A is denoted by | ~A| or simply A =
√

A2
x + A2

y + A2
z. Clearly, | ~A|2 = ~A· ~A.

The angle θ between two vectors ~A and ~B is given by

cos θ =
~A · ~B

| ~A|| ~B|
; sin θ =

| ~A × ~B|

| ~A|| ~B|

The cross-product can be rewritten in the equivalent form

~A × ~B =
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= (AyBz − ByAz)~ex + (AzBx − BzAx)~ey + (AxBy − BxAy)~ez

Identities we will use later on:

~A · ( ~B × ~C) =

∣
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Ax Ay Az

Bx By Bz

Cx Cy Cz
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= ~B · (~C × ~A) = ~C · ( ~A × ~B)

~A ×
(

~B × ~C
)

= ~B( ~A · ~C) − ~C( ~A · ~B)
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2 Cartesian, Cylindrical and Spherical Coordinates

Let ~A = Ax~ex + Ay~ey + Az~ez be the decomposition of a vector in Cartesian coordinates (Fig. 1).
There are two other coordinate systems that may be more convenient, depending on the symmetry
of the problem considered:
a) cylindrical coordinates (Fig. 2). We keep the z-axis projection,
but in-plane we choose two new unit vectors: ~eρ – which is point-
ing in the radial direction (the direction in which ρ alone increases,
while φ, z are unchanged) and ~eρ – which is pointing in the tangen-
tial direction (the direction to move to increase φ, while keeping
ρ, z unchanged). Therefore:

~A = Aρ~eρ + Az~ez

where










~eρ = cos φ~ex + sin φ~ey

~eφ = − sin φ~ex + cos φ~ey

~ez = ~ez

and
| ~A|2 = A2

ρ + A2
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Fig 2. Cylindrical coordinate system.
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Fig 3. Spherical coordinate system.

b) spherical coordinates (Fig. 3). Here we have 3 new unit vectors:
~er – points in the direction in which r, the distance from origin, in-
creases while keeping φ, θ are unchanged; and similarly, ~eφ, ~eθ which
point in the direction which would increase only φ, respectively only
θ, while keeping the other coordinates fixed. Then:

~A = Ar~er

where










~er = sin θ cos φ~ex + sin θ sin φ~ey + cos θ~ez

~eθ = cos θ cos φ~ex + cos θ sin φ~ey − sin θ~ez

~eφ = − sin φ~ex + cos φ~ey

and
| ~A| = Ar

3 Speed and acceleration vectors in various coordinate systems

Notation:
df(t)

dt
= ḟ(t)

d2f(t)

dt2
= f̈(t)

(i) Cartesian coordinates: the triad (~ex, ~ey, ~ez) is fixed, therefore:

~r(t) = x(t)~ex + y(t)~ey + z(t)~ez (1)

~v(t) =
d~r(t)

dt
= ẋ(t)~ex + ẏ(t)~ey + ż(t)~ez; |~v|2 = (ẋ)2 + (ẏ)2 + (ż)2 (2)
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~a(t) =
d~v(t)

dt
=

d2~r(t)

dt2
= ẍ(t)~ex + ÿ(t)~ey + z̈(t)~ez (3)

(ii) Cylindrical coordinates: ~eρ and ~eφ change in time, because the angle φ(t) changes as the vector
~r(t) varies. We have:

{

~̇eρ = − sin φφ̇~ex + cos φφ̇~ey = φ̇~eφ

~̇eφ = − cos φφ̇~ex − sin φφ̇~ey = −φ̇~eρ

Then
~r(t) = ρ(t)~eρ + z(t)~ez (4)

~v(t) = ~̇r(t) = ρ̇~eρ + ρφ̇~eφ + ż~ez; |~v|2 = ρ̇2 + ρ2φ̇2 + ż2 (5)

~a(t) = ~̈r(t) =
(

ρ̈ − ρφ̇2
)

~eρ +
(

2ρ̇φ̇ + ρφ̈
)

~eφ + z̈(t)~ez (6)

(iii) Spherical coordinates: all three unit vectors change in time as ~r(t)x varies. We have:














~̇er = θ̇~eθ + sin θφ̇~eφ

~̇eθ = −θ̇~er + cos θφ̇~eφ

~̇eφ = −φ̇ (sin θ~er + cos θ~eθ)

Then
~r(t) = r(t)~er (7)

~v(t) = ṙ~er + rθ̇~eθ + r sin θφ̇eφ; |~v|2 = ṙ2 + r2θ̇2 + r2 sin2 θφ̇2 (8)

~a(t) =
[

r̈ − rθ̇2 − rφ̇2 sin2 θ
]

~er +
[

rθ̈ + 2ṙθ̇ − rφ̇2 sin θ cos θ
]

~eθ +
[

rφ̈ sin θ + 2ṙφ̇ sin θ + 2rφ̇θ̇ cos θ
]

~eφ

(9)
Luckily, we will not need to use the accelerations in this course, only the speeds.

4 Derivatives

a) function of one variable: Let f(x) be some
function of x. Then, we define:

df(x)

dx
= lim

∆x→0

f(x + ∆x) − f(x)

∆x

Some examples:

dxn

dx
= nxn−1;

d cos(x)

dx
= − sin x;

d sin x

dx
= cos x

chain rule:
df(g(x))

dx
=

df

dg

dg

dx
x x+Dx

f(x)

f(x+Dx)

f(x) α

x
Fig 4. Derivative of a function, and extremum conditions.

Functions we encounter in physical problems are usually well-behaved (continuous etc), and deriva-
tives are well defined. The geometric meaning of the derivative is that it equals the slope tanα of
the function, at the point of interest (see Fig. 4). It follows that a local extremum (maximum or
minimum) condition is α = 0, i.e.

df(x)

dx
= 0
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Whether this local extremum is a maximum or minimum depends on the sign of the second derivative:

if d2f(x)
dx2 < 0 → local maximum, if d2f(x)

dx2 > 0 → local minimum.
b) function of several variables: assume a function of several variables f(q1, ..., qN ). We can
define two types of derivatives, partial and total.

The partial derivative ∂ with respect to one variable qi is given by the variation in the function
when only that particular variable is allowed to change by a small amount:

∂f

∂qi

= lim
∆qi→0

f(q1, ..., qi + ∆qi, ..., qN ) − f(q1, ..., qi, ..., qN)

∆qi

In other words, it is similar to taking a normal derivative when we assume that all other variables
are simple constants.

Example: let

f(x, y, z, t) = 3tx2 + 4xy + 5yz + 2(y2 + z2) + (x + y + 2z) sin t

then

∂f

∂x
= 6tx + 4y + sin t;

∂f

∂y
= 4x + 4y + sin t;

∂f

∂z
= 5y + 4z + 2 sin t;

∂f

∂t
= 3x2 + (x + y + 2z) cos t

However, some of the arguments of a function may be themselves dependent on some other
variables. For instance, let us consider a function g(q1, ...qN , t) where q1, ...qN are themselves functions
of the variable t. Then, we can define the total derivative with respect to t as being given by the
total variation of the function when we allow t to vary by a small amount:

dg

dt
= lim

∆t→0

g(q1(t + ∆t), ..., qN(t + ∆t), t + ∆t) − g(q1(t), ..., qN(t), t)

∆t

This is very different from the partial derivative with respect to t, when we keep q1, ..., qN unchanged:

∂g

∂t
= lim

∆t→0

g(q1(t), ..., qN(t), t + ∆t) − g(q1(t), ..., qN(t), t)

∆t

From the chain rule, it follows that

dg

dt
=

N
∑

i=1

∂g

∂qi

dqi

dt
+

∂g

∂t

Example: consider
g(x, y) = 3x + 2xy

Then
∂g

∂x
= 3 + 2y;

∂g

∂y
= 2x;

∂g

∂t
= 0

and as a result:
dg

dt
= (3 + 2y)

dx

dt
+ 2x

dy

dt
E.g., if x(t) = 3t + 2 and y(t) = t2, it follows that

dg

dt
= (3 + 2y)3 + 2x · 2t = 9 + 8t + 18t2 =

d

dt

(

3[3t + 2] + 2[3t + 2]t2
)

If a function has no explicit dependence on a variable (i.e., no term in the function contains
that variable), then the partial derivative of the function with respect to that variable is zero. For
instance, in the last example ∂g/∂t = 0. However, since both x and y depend on t, we say that the
function g depends implicitly on t, and its total derivative with respect to t need not be zero.
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