
Very brief introduction to Functionals

Function : a mathematical relation which maps one (or more) numbers (known as variables) into
one number (the value of the function). Notation: f(x, y, z, ...).

Example: if f(x) = 3x then x = 1 → f = 3, x = 2 → f = 6, etc.
Functional : a mathematical relation which maps one (or more) functions into one number.

Notation F [f, g, h...].
Example: F [f ] =

∫

1

0
dxf 2(x). If f(x) = x → F = 1/3, if f(x) = 1 → F = 1, etc. Some care must

be taken that the argument functions are well-behaved mathematically.
Example: F [f, g] =

∫

∞

0
dx(f(x)/g(x)− x3g(x)). As long as the integrand is well-behaved, we can

find a value for F given any f(x) and g(x).
Action is a functional depending on the generalized coordinates. For instance, assume that we

have just one degree of freedom, and suppose that we know that L(q, q̇, t) = 3q̇2 + 4q (we will learn
next how to find the Lagrangian for any given mechanical system). Hamilton’s principle tells us that
the true trajectory q(t) is the one function q(t) which minimizes S =

∫ t2
t1

dtL and also satisfies the
boundary conditions q(t1) = q1 and q(t2) = q2.

How can we find this function? One (terrible) way is to try various possibilities, and see which
works best. For instance, we could try a linear function q(t) = at+ b. Our trial function must satisfy
the boundary conditions. The only linear function that does is q(t) = q1 + q2(t − t1)/(t2 − t1). For
simplicity, let’s assume that we have t1 = 0, q1 = 0, t2 = 1, q2 = 1 (in some proper units), in which
case q(t) = t. For this “guess”, we have q̇ = 1 and therefore

S =
∫

1

0

dt (3 + 4t) = 5

But we could also try a quadratic function, q(t) = a+bt+ct2. This satisfies the boundary conditions
if a = 0 and b + c = 1, so the most general form for such a trial function is q(t) = bt + (1 − b)t2.
Then q̇ = b + 2(1 − b)t and we find

S(b) =
∫

1

0

dt
(

3(b + 2(1 − b)t)2 + 4(bt + (1 − b)t2)
)

=
16

3
− 4

3
b + b2

Remember that we’re trying to find the minimum possible value, which is obtained when dS/db = 0,
d2S/db2 > 0 → b = 2/3 → Smin = 44/9. In other words, the choice q(t) = 2/3t + 1/3t2 is better
than q(t) = t, since it leads to a lower value for the action. But now you see the problem with this
approach: we could try third order polynomials, fourth order polynomials and so on and so forth.
But we could also try exponentials, square roots, logarithmic dependencies ... Besides the fact that
this problem would occupy the rest of our lives, we could never be quite sure that there isn’t a better
function that would lead to an even lower value for S!

So let us learn how to solve this problem nicely and painlessly.

Extremum of a functional

We know that a function reaches an extremum value when its derivative is zero. In other words, if
x0 is the value for which f(x0) has an extremum (min. or max. value), then for any small variation
δx we have f(x0 + δx) − f(x) = δx df

dx
= 0 (see definition of derivative).

For functionals, the situation is very similar. An extremum is given by the function f if, for any
small variation δf , we have δF = F [f + δf ]−F [f ] = 0 (here, we assume that any term proportional
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to (δf)2, (δf)3 etc is vanishingly small). This means that to first order, small variations in the
argument f do not change the value of the functional, F , if we are at an extremum.

Example: Q for what expression of f(x) does the functional F [f ] =
∫

1

0
(3f 2(x) − xf(x)) take an

extremum value?
A: Keeping only terms up to δf , we find:

F [f + δf ] =
∫

1

0

[

3(f 2 + 2fδf + ...) − x(f + δf)
]

dx

and therefore

F [f + δf) − F [f ] =
∫

1

0

δf(x) [6f(x) − x] dx

This quantity is zero for any small variation δf if and only if 6f(x) − x = 0 → f(x) = x/6.

Euler equations

Assume that we have a functional of the following particular form (single degree of freedom):

S[q] =
∫ t2

t1

dtL(q, q̇, t)

and we want to find the condition for an extremum which satisfies the condition q(t1) = q1, q(t2) = q2.
The function L is assumed to be known.

We proceed in the same way: we consider a small variation δq(t) of the function q(t). Then, the
function q̇(t) will vary by the amount d

dt
δq(t). Since the boundary condition must be satisfied by all

functions q(t) considered (and therefore, in particular, by q + δq), it follows that we can only use
small variations δq(t) for which δq(t1) = δq(t2) = 0.

Then,

S[q + δq] − S[q] =
∫ t2

t1

dt

[

L(q + δq, q̇ +
d

dt
δq, t) − L(q, q̇, t)

]

=
∫ t2

t1

dt

[

∂L
∂q

δq +
∂L
∂q̇

d

dt
δq

]

We have now to integrate the second term by parts, since we need the dependence on δq, not on its
time derivative. We have:

∫ t2

t1

dt
∂L
∂q̇

d

dt
δq =

∂L
∂q̇

δq(t)|t2t1 −
∫ t2

t1

dt

(

d

dt

∂L
∂q̇

)

δq(t) = −
∫ t2

t1

dt

(

d

dt

∂L
∂q̇

)

δq(t)

since δq(t1) = δq(t2) = 0.
Collecting the terms, we finally find that:

S[q + δq] − S[q] =
∫ t2

t1

dt

(

∂L
∂q

− d

dt

∂L
∂q̇

)

δq(t)

It follows that the extremum is reached when

d

dt

∂L
∂q̇

− ∂L
∂q

= 0

This is the famous Euler-Lagrange equation. If there are s > 1 degrees of freedom, one can follow
the same procedure and show that the extremum of the action is reached when the Euler-Lagrange
equations:

d

dt

∂L
∂q̇i

− ∂L
∂qi

= 0
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are satisfied for all i = 1, 2, ..., s generalized coordinates.
In Lagrangian formalism, the Euler-Lagrange equations provide the equations of motion of the

system (the equivalent of Newton’s second law).
Observations

A. We now understand why we require that L is a function of q, q̇ and t only. If we added
higher order derivatives, such as q̈, ... , then we would have third or higher order derivatives of
the generalized coordinates appearing in the Euler-Lagrange equations. We know (from Newtonian
mechanics, based on experimental evidence), that the equations of motion involve only accelerations,
speeds and coordinates (plus time), and therefore this implies that L can be a function of only q, q̇
and t.

B. Dynamics is invariant to a scaling of the Lagrangian by an overall factor. This will change the
action by the same overall constant, but the Euler-Lagrange equations are unaffected and therefore
the dynamics is the same. We will make a particular convention on choosing a “magnitude” for the
Lagrangians, but this scaling property is quite useful, as we will learn later.

C. Dynamics is invariant if we add the total time derivative of any well-behaved function of f(q, t)
to the Lagrangian, i.e. L′ = L + df(q, t)/dt. ( f should not depend on higher order derivatives of q
since that would imply that the new Lagrangian depends on q̈ or higher derivatives – see A). This
can be demonstrated from Hamilton’s principle directly, since such a change implies a change in the
total action

S ′ =
∫ t2

t1

dtL(q, q̇, t) +
∫ t2

t1

dt
df(q, t)

dt
= S + f(q, t)|t2t1 = S + f(q2, t2) − f(q1, t1)

Since the initial and final points are fixed, all that happened is that we added an overall constant to
the action. This will not change the extremum condition, and therefore the dynamics of the system
is unchanged. The invariance can be shown directly on the Euler-Lagrange equations as well.

Before continuing with Lagrangian mechanics, it is useful to point out such “optimization prob-
lems” can be used to solve a variety of problems outside mechanics.

Optimization problems

These are problems in which one tries to find a solution which provides an extremum for some global
condition. One can think, for instance, of economic problems, where one wants to maximize profit
from investing certain amounts of money in certain stocks over time, when the financial markets have
a certain evolution, etc.

Here, we will consider a few simpler examples.
Example 1. What is the path that provides the shortest distance between two points?
Solution: Let us assume (with no loss in generality) that the two points are in the z = 0 plane

and that they have coordinates (x1, y1) and (x2, y2). Let y(x) be a path that links the two points. It
follows that y(x) must satisfy the condition y(x1) = y1 and y(x2) = y2 (see Fig. 1).

For the infinitesimal interval between [x, x + dx], the length of the path is ds =
√

dx2 + dy2 =

dx
√

1 + (dy/dx)2. It follows that the total length of the path must be

L[y] =
∫ x2

x1

dx

√

√

√

√1 +

(

dy

dx

)2
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We already know the solution which minimizes this
problem. If we look at the Euler-Lagrange equa-
tion, here we have the same type of functional,
if we equate L → S, y → q, x → t and there-
fore ẏ = dy/dx → dq/dt = q̇ and the function
L(y, ẏ, x) =

√
1 + ẏ2. With these notations, the

Euler-Lagrange equation is

d

dx

∂L
∂ẏ

− ∂L
∂y

= 0

Since L has no explicit dependence on y, it follows
that ∂L

∂y
= 0, while ∂L

∂ẏ
= ẏ/

√
1 + ẏ2. Then, we

must have:
x

y1

x
.

y

y2

y+dy

y

xx x+dx

.

P

P

ds

1

2

1 2

dx
dy

Fig 1. Figure for problem 1.

0 =
d

dx

ẏ√
1 + ẏ2

→ ẏ√
1 + ẏ2

= const → ẏ = const → y(x) = αx + β.

The unknowns constants α and β are given by the conditions y(x1) = y1 and y(x2) = y2, leading to
the final solution

y(x) =
(y2 − y1)

x2 − x1

x +
y2x1 − y1x2

x2 − x1

In other words, the path minimizing the total distance is the straight line between the points.

Example 2. This is a famous problem in the his-
tory of physics, called the “brachistochrone”, and
solved by Bernoulli in 1696: consider a particle
that starts at rest from x = 0 and height z = 0
and moves in the plane y = 0 to a lower position
x = d, z = h (see Fig. 2). If the particle moves
in the gravitational field of the Earth, what must
be the shape of the curve z(x) such that the time

needed for the particle to move between the two
points is minimized?
Solution As already discussed in Example 1, the
length of the path as the particle moves between
[z, z +dz] is ds =

√
dx2 + dz2 = dz

√
1 + ẋ2, where

we now use the shorthand notation ẋ = dx/dz.

xdx x+dx

z

z

h
z+dz

Fig 2. Figure for problem 2.

The time dt needed to move along the length ds is given by dt = ds/v(z), where v(z) is the speed
of the particle when its height is z (we know that the speed is always tangential to the path). From
the conservation of energy we have mv2/2 − mgz = ct, where the constant is found to be zero from
the initial conditions v = 0 for x = z = 0. Then

v(z) =
√

2gz

(the speed is a positive number, so the −√
2gz solution is physically unacceptable), and we find the

total time to move from z = 0 to z = h to be

T [z] =
∫ h

0

dz

√
1 + ẋ2

√
2gz
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We use again the Euler-Lagrange equation to find the solution x(z) which minimizes this func-
tional. In this case, L(x, ẋ, z) =

√
1 + ẋ2/

√
2gz and therefore

∂L
∂ẋ

=
ẋ√

1 + ẋ2
√

2gz

while
∂L
∂x

= 0

Then, the E-L equation becomes:

d

dz

∂L
∂ẋ

− ∂L
∂x

= 0 → d

dz

(

ẋ√
1 + ẋ2

√
2gz

)

= 0 → ẋ√
1 + ẋ2

√
2gz

= c1

where c1 is a constant. We can now square this to find

ẋ2

(1 + ẋ2)(2gz)
= c2

1
→ ẋ =

dx

dz
=

√

√

√

√

2gzc2
1

1 − 2gzc2
1

Now, we integrate from the initial point x = 0, z = 0 to some point on the curve (x, z) to find:

x =
∫ z

0

dz

√

√

√

√

2gzc2
1

1 − 2gzc2
1

We know that the expression under the square root must be positive, because x is certainly a real
number. It follows that 1 > 2gzc2

1
> 0, and so we make the substitution:

2gzc2

1
= sin2

θ

2
→ 1 − 2gzc2

1
= cos2

θ

2
→

√

√

√

√

2gzc2
1

1 − 2gzc2
1

=
sin θ

2

cos θ
2

(the factor of 2 turns out to be convenient at the end, otherwise one could certainly choose just sin2 θ
in the substitution. We could also choose cos2, but sin2 is more convenient since it follows that for
z = 0 → θ = 0, which is nice). Taking the variation, we also find:

2gc2

1
dz = sin

θ

2
cos

θ

2
dθ

We use the angle θ to parameterize the solution. We already know that

z =
1

2gc2
1

sin2
θ

2
=

1

4gc2
1

(1 − cos θ)

and

x =
∫ θ

0

dθ sin θ
2
cos θ

2

2gc2
1

sin θ
2

cos θ
2

= ... =
1

4gc2
1

(θ − sin θ)

Since both x and z are distances, let us use a new constant a = 1

4gc2
1

which must be some length, to

be determined from the condition that for x = d, z = h. The solution is then:

x = a(θ − sin θ)
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z = a(1 − cos θ)

Finding a as a function of d and h is rather ugly
(one must solve the problem numerically). How-
ever, this solution has a very nice geometrical in-
terpretation, shown in Fig. 3. Assume that P
is a point on the circumference of a wheel of ra-
dius a. Then, the curve described by P as the
wheel rotates (without sliding) an angle θ is pre-
cisely the brachistochrone. Such a curve is called
a “cycloid”. If you wish to see one experimentally,
attach a small light on the wheel of a bike, and
watch the curve it generates as the bike moves at
night. z

a

a a
θ

θ
a sin   

−a cos a

θ xπ 2πa a

θ

Fig 3. Figure for problem 2.

There are many more such examples, such as Fermat’s principle in optics, the geodesics, etc – and,
of course, all the Lagrangian mechanics we will be dealing with in the rest of this course. However, it
is important to point out that there is a more general class of optimization problems, which involve
additional constraints. The only constraints for the problems we considered are that the solution
starts and ends at given points. However, there may be more general constraints. For instance,
consider the following problem: we want to find the shape of the planar geometrical closed curve
with the largest possible total area A, for a fixed perimeter L. If this shape was a circle, than its
radius is 2πr = L → r = L/(2π), and therefore the corresponding area is A = πr2 = L2/(4π). If
the shape is a square, then L = 4a → a = L/4, and therefore A = a2 = L2/16. This is smaller
than the area of the corresponding circle, so clearly the answer is not the square. But maybe it is a
parallelogram, or a hexagon, or some other unusual planar shape? It turns out that the extremum
is given by the circle.

The constraint that the total perimeter L be fixed is a global constraint ( it depends on the shape
of the entire curve, not only its initial and final points), and therefore must be imposed in a different
way than we imposed the boundary constraints. The technique to do this is well established, and
involves the so-called “Lagrange multipliers”. The main idea is that for each new such constraint, one
must add a new term to the total functional. This new term is multiplied by an unknown constant
(called a Lagrange multiplier), and is chosen in a specific way to enforce the desired constraint. Then,
one finds the Euler-Lagrange equations for this more complicated functional, and the values of the
Lagrange multipliers are found from the constraints.

This might sound complicated, but it is really quite simple. However, since we will not deal with
such problems in the rest of the course, we will not study this technique here. Physics students are
guaranteed to learn this technique in other courses.
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