
PhD(Astro) Qualifying examination - 2016

13:30 - 17:30, 2 September 2016

Do not open the exam until instructed to do so
but you may read this cover sheet

Instructions:

A one-page (8.5× 11 inch) hand-written double-sided sheet of notes is allowed.

A scientific calculator is allowed and expected.

Put your name on upper right corner of your exam book.

All answers must be written in the exam books.

Start every question on a new page.

There are 8 questions to choose from. You will only select and provide answers for 5 of them; you
may not attempt any portion of the other 3 questions. The five questions you choose all have equal
value, and thus you may wish to time budget about 45 minutes per question.

On the front of your exam booklet you should clearly indicate which 5 questions you wish graded
if you have any writing in your answers for more than 5 questions. If not, the first 5 questions
started in your exam booklets will be graded.

Please return this examination with your exam booklet.
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1. The Juno spacecraft arrived at Jupiter on July 4, 2016, to begin examination of the planet’s
gravity field and magnetosphere from an orbit that will bring it very close each passage. For
this question you may assume the answer from each previous part even if you do not derive
the previous answer. You must show your work clearly for full points. Some facts:

RJ = 71, 500 km,

aJ = 5.2028870 AU,

GMJ = 1.26686× 108 km3/s2,

GM� = 1.32712438× 1011 km3/s2.

(a) (5 points) Assume a lowest energy Hohmann transfer ellipse and show that Juno en-
countered Jupiter with a relative speed of v∞ ' 5.7 km/s, taking the heliocentric orbits
of Jupiter and Earth to be circular and in the same orbital plane.

(b) (5 points) The spacecraft arrived 4700 km above the cloud tops (radius given above) for
its Jupiter Orbit Insertion (JOI) where it was at perijove (pericenter for an osculating
orbit). Show that it was moving at 57.9 km/s relative to Jupiter.

(c) (6 points) The probe fired engines in a 35-minute burst that slowed its speed by 542 m/s.
Approximating this as a single instantaneous impulsive burst, compute the semimajor
axis if the new jovianocentric orbit, both in km and AU, the orbital eccentricity, and
period in days. Explain in 1-3 sentences why this kind of orbit is needed for the scientific
goals of the mission.

(d) (4 points) The Hill sphere (similar to the tidal Roche lobe for binaries) roughly gives
the region of gravitational dominance of the planet. Orbits which take an object out
more than half a Hill sphere away are very perturbed. First compute the jovian Hill
sphere, and then decide if the probe’s first orbit around Jupiter will enter this heavily
perturbed regime. If you did not answer (c) then please use 0.050 AU as the Juno orbital
semimajor axis.

Solutions:

(a) From Kepler and Newton,

v2 = GM�

(
2

r
− 1

a

)
Juno’s orbit has a perihelion distance of 1 AU and an aphelian distance of aJ . Thus, the
semimajor axis of the orbit is a = (aJ + 1 AU)/2 = 3.101 AU, and at Jupiter, r = aJ .
Therefore Juno’s speed is

v =

[
GM�

(
2

aJ
− 2

aJ + 1 AU

)]1/2
=

[
2GM� AU

aJ(aJ + 1 AU)

]1/2
= 7.41 km/s

Jupiter’s orbital speed is

vJ =

[
GM�
aJ

]1/2
= 13.06 km/s.

Jupiter is overtaking Juno, so the relative speed is ∆v = vJ − v = 5.65 km/s.
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(b) Apply the same equation to the orbit around Jupiter, letting a → ∞. Add to this the
kinetic energy that the probe already has as it arrives at Jupiter.

v2 =
2GM

Rj + 4700 km
+ (∆v)2.

which gives v = 57.940 km/s.

(c) Now use the Kepler equation to find the semimajor axis of the new orbit around Jupiter.

1

a
=

2

r
− v2

GMJ
=

2

Rj + 4700 km
− (57.940− 0.542)2

GMJ

which gives a = 4145286 km = 0.0277 AU.

The pericenter distance is rp = a(1− ε), so the eccentricity is

ε = 1− Rj + 4700 km

4145286 km
= 0.9816.

The period is given by Kepler’s third law,

P =

(
4π2a3

GMJ

)1/2

= 4711371 s = 54.53 day.

A very deep pericenter and large range of distances is the only way to have sensitivity
to the higher-order multipoles of both the gravity field (J2, J4, etc) and magnetosphere.
This remote sensing is how interior models of the planet will be constrained.

(d) The radius of Jupiter’s Hill sphere is

r ' aJ
(
MJ

3M�

)1/3

' 0.355 AU.

So the orbit will not enter the heavily-perturbed region.
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2. (a) (5 points) Write down an equation for the power emitted in synchrotron radiation by a
single electron moving in a magnetic field, in terms of the energy density of the magnetic
field and the Lorentz factor of the electron.

(b) (5 points) The number density of the electrons is ne and they fill a spherical region of
radius R. Estimate the energy density of photons within the sphere, assuming that it is
optically thin.

(c) (5 points) What is the inverse Compton emission from a single electron passing through
a gas of photons field in terms of the energy density of the photons and the Lorentz
factor of the electron?

(d) (5 points) What is the total inverse Compton emission from the region if you assume that
the synchrotron emission provides the seed photons for the inverse Compton emission?

Solutions:

(a)

PB =
4

3
γ2cβ2σTUB

(b) Pne gives the power per unit volume. To get the energy per unit volume we have to
multiply by the typical time for photons to escape the spherical region typically R/c
because it is optically thin so we have

Uphoton =
4

3
γ2σT cβ

2UBne
R

c

(c)

PIC =
4

3
γ2cβ2σTUphoton

(d)

PIC =
4

3
γ2cβ2σT

(
4

3
γ2cβ2σTUBne

R

c

)
neV

so

PIC =
64

27
πγ4β4cσ2TUBn

2
eR

4
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3. (a) (5 points) Show that for a gaseous protoplanetary disc in equilibrium, the gas orbital
speed must be less than the Keplerian circular speed in regions that have an outward
decreasing pressure gradient. For simplicity, consider only the midplane of the disc.
Define your terms.

(b) (5 points) Now consider the evolution of a cm-sized particle in a gaseous protoplanetary
disc. As before, let the disc pressure decrease with increasing radius. However, now
suppose that in a very localized radial region of the disc, the radial pressure gradient
briefly becomes positive before returning to its normal negative profile. Describe the
orbital evolution of the cm-sized particle if it were originally exterior to the local pressure
gradient inversion. Be succinct and clear.

(c) (10 points) What is the direction and speed of a cm-sized particle if it is placed at 1 AU in
a solar nebula-like disc around a solar mass star? Let the pressure gradient decrease with
increasing radius over the entire region of interest. Use power-law parameterizations for
the midplane gas density and temperature along with the ideal gas law. Specifically, let
T (R) = 300(R/AU)−m K and ρ(R) = 10−9(R/AU)−n g/cc, where m = 0.5 and n = 2.5.
For further simplicity, you may use the Epstein regime for calculating the particle’s
stopping time ts = ρss/(ρc) in the gaseous disc. Here, ρs is the internal density of the
cm-sized solid, s is the solid size, ρ is the gas density, and c is the sound speed. Ignore
turbulence. Hint: estimate the radial drift by ∆gts, where ∆g is the “residual gravity”,
i.e., the radial force imbalance caused by the particle orbiting with the gas instead of
the Keplerian speed. Make reasonable assumptions for any additional values that are
needed.

Solutions:

(a) Hydrostatic equilibrium demands that

1

ρ

dP

dR
= −Ω2

kR+ Ω2R,

where ρ is the gas density, P is the pressure, R is radial distance from the star, Ωk =√
(GM/R3) is the Keplerian circular angular speed (mean motion), and Ω is the gas

orbital angular speed. Rearranging the terms we see that

Ω2 = Ω2
k +

1

ρR

dP

dR
,

which means that if dP/dR < 0, then the orbital speed of the gas must be less than the
Keplerian speed. The solution may be written using either the angular or linear speed.

(b) A negative radial pressure gradient would cause the gas flow to be sub-Keplerian. Be-
cause the cm-sized particle is not supported by hydrostatic pressure, it must orbit at the
Keplerian speed to maintain orbit. The difference in the orbital speeds would result in
the particle feeling a headwind, which would cause it to lose angular momentum due to
drag and drift inward. However, a positive pressure gradient demands that the gas or-
bital speed be super-Keplerian. Thus, if the particle were placed in the positive gradient
region, it would gain angular momentum due to drag and drift outward. Altogether, if
the cm-sized particle were to start exterior to the pressure inversion, the cm-sized par-
ticle would drift inward until it reached the inversion, and then would become trapped
where the pressure gradient transitions from positive to negative.
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(c) As given above, the force imbalance is just due to the pressure gradient term in hydro-
static equilibrium,

∆g =
1

ρ
dP/dR.

Let T = T0(R/R0)
−m and ρ = ρ0(R/R0)

−n. This means dP/dR = −(n + m)P/R for
our assumptions. Using the sound speed c and adiabatic index γ,

dP/dR = −(n+m)ρc2/(γR),

so
∆g = −(n+m)c2/(γR).

Using the definition of the stopping time, the radial drift speed is

vr = −(n+m)ρssc/(γRρ).

For n = 2.5, m = 0.5, γ = 1.4, c = 1.2 km/s, s = 1 cm, ρ = 1× 10−9 g/cc, ρs = 3 g/cc,
R = 1.5× 1013 cm, vr = −50 cm/s (drifting inwards).

Notes: 1) accept the isothermal sound speed instead of the adiabatic should they use it,
which would negate the use of γ. 2) The sound speed is derived assuming a temperature
of 300 K, an adiabatic index of 1.4, and a mean weight of 2.3 g/mol.
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4. Using the concept of virial equilibrium, gravitational potential energy and kinetic energy due
to thermal motion and degeneracy, calculate the maximum temperature that can be achieved
by a spherical mass of hydrogen gas of uniform density.

Solution:

U = −3

5

GM2

R

K =
M

mp

(
3kT +

p2F
2me

)
Now

8π

3

p3F
h3

= n =
M

mp

3

4πR3

so

p3F =
M

mp

3

4πR3

3h3

8π

Set U+2K = 0 and solve for T = T (R,M). Take dT/dR and find the maximum temperature
for a given mass.

kT =
1

5

GM2

R

mp

M
−

p2F
6me

where pF is given in terms of M and R above so

kT =
GMmp

5R
− h2

6meR2

(
9M

32mpπ2

)2/3

and
d(kT )

dR
= −GMmp

5R2
+ 2

h2

6meR3

(
9M

32mpπ2

)2/3

and

kTmax =
642/3G2M4/3mem

8/3
p π4/3

2592/3h2

This is about 40 MK for one solar mass or 3.6 keV. Just about right!

For 100 solar masses you get 1.6 MeV so unless you have lots of nuclear burning ahead of
time you will get electron-positron pairs in such a massive star (pair-instability SN). On the
other hand for 0.1 solar mass you only get 2 MK, barely enough for nuclear burning.
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5. (20 points) Currently, the best evidence for the direct detection of dark matter comes from the
DAMA experiment that looks for flashes of light produced when dark matter particles interact
with a sodium iodide crystal located deep underground in Italy’s Gran Sasso laboratory. The
DAMA team reports a 9-sigma signal that peaks in the summer and wanes in the winter.
This is expected theoretically as in summer the Earth is traveling in the same direction as
the Sun through the galactic dark matter halo and therefore encounters dark matter particles
more frequently.

Assuming that the dark matter particles have a thermal velocity distribution, predict the
magnitude of the summer-winter peak-to-peak variation in the detection rate if these events
are due to dark matter interactions. The period of the Sun’s orbit around the is about 250
million years and the distance to the galactic centre is about 8.5 kpc.

Solution:

Let the velocity of the Earth with respect to the dark matter halo be V . Let the velocity
component of a dark matter particle in this same direction be v. The relative velocity is then

∆v = V − v

The collision rate is
R = nσ∆v

where σ is the collision cross section and n is the number density of dark matter particles.

Integrating this over the 1-d velocity distribution f(v) ∝ exp(−mv2/2kT ) of the dark
matter,

R = nσ

∫ ∞
−∞

(V − v)f(v)dv = nσV.

The last equality follows because f(v) is a symmetric function whose integral is unity.

The ratio of rates is therefore

Rsummer

Rwinter
=
nσ(v� + v⊕)

nσ(v� − v⊕)
=

1 + x

1− x

where x = v⊕/v� is the ratio of the Earth’s orbital velocity about the Sun to the Sun’s orbital
velocity about the galactic centre. These are, respectively,

v⊕ = 2π AU/1 yr,

v� = 2π × 8.5 kpc/250× 106 yr

Therefore,

x =
250× 106

8500× 206265
= 0.1426.

Thus the expected ratio of peak summer/winter rates is

Rsummer

Rwinter
=

1 + x

1− x
= 1.33

So we expect a 33% variation.
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6. (a) (10 points) Show that, for a homogeneous universe filled with a perfect gas of density ρ
and pressure P , expanding adiabatically, the second Friedmann equation

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3

follows from the first Friedmann equation

ȧ2

a2
=

8πG

3
ρ− k

a2
+

Λ

3
,

and the first law of thermodynamics

dU = TdS + PdV

Here a is the scale factor, k is the curvature constant, Λ is the cosmological constant, U
is the energy contained within some volume V , and we are using units in which c = 1.

(b) (10 points) Assume a zero cosmological constant and a matter-dominated flat universe
where eventually the pressure becomes negligible. At large times how does the scale
factor depend on time t?

Solutions:

(a) In an adiabatic expansion there is no change in entropy, so dS = 0. The first law becomes

d(ρV ) = V dρ+ ρdV = PdV.

Therefore, since V ∝ a3,

dρ = −(ρ− P )
dV

V
= −3(ρ− P )

da

a

Now multiply the first Friedmann equation by a2 and differentiate,

2ȧä =
8πG

3

d

dt

(
ρa2
)

+
2

3
Λaȧ,

Evaluating the first term on the RHS and substituting from the first law,

ȧä =
4πG

3
[−3(ρ− P )aȧ+ 2ρaȧ] +

1

3
Λaȧ,

= −4πG

3
(ρ+ 3P ) aȧ+

Λ

3
aȧ

from which the desired result immediately follows.

(b) Set Λ = 0 and k = 0 in the first Friedmann equation. If there is no pressure, the first law
of thermodynamics becomes d(ρV ) = 0 which requires ρ ∝ V −1 ∝ a−3. Therefore,
ȧ ∝ a−1/2. Integrating this with the boundary condition a(0) = 0 gives the solution
a(t) ∝ t2/3.
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7. Statistical inference

Suppose we have position measurements of galaxies in a small cluster and would like to know
if the Elliptical and S0 galaxies are distributed differently. So we estimate the position of
the cluster centre and compute the angular distances of each galaxy from this point. The
resulting distances (in arcmin) for 18 galaxies are shown in the table below.

E S0

3.8 12.5
8.6 5.3
2.1 7.8
4.9 11.2
6.1 9.8
3.3 6.7
4.4 8.3
10.2 2.3
0.4
2.9

Use the two-sample Kolmogorov-Smirnov test to estimate the probability that these two
samples are drawn from the same population. Are the differences statistically significant?

For reference, the probability of finding a value of
√
mn/(m+ n) sup |F −G| as large as x,

if the two samples are drawn from the same parent distribution, is given by 1−K(x) where
K(x) is the Kolmogorov distribution

K(x) = 1− 2
[
e−2x

2 − e−2·4x2
+ e−2·9x

2 − e−2·16x2
+ · · ·

]
Here F and G are the cumulative distributions of the two samples and m and n are the sizes
of the two samples.

Solution:

First sort the numbers for the two samples and place them in ascending order. Compute the
cumulative distributions and the differences:
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xE xS0 F (xE) G(xS0) diff

0.4 0.1 0.000 0.1
2.1 0.2 0.000 0.2

2.3 0.2 0.125 0.075
2.9 0.3 0.125 0.175
3.3 0.4 0.125 0.275
3.8 0.5 0.125 0.375
4.4 0.6 0.125 0.475
4.9 0.7 0.125 0.575

5.3 0.7 0.250 0.450
6.1 0.8 0.250 0.550

6.7 0.8 0.375 0.425
7.8 0.8 0.500 0.300
8.3 0.8 0.625 0.175

8.6 0.9 0.625 0.275
9.8 0.9 0.750 0.150

10.2 1.0 0.750 0.250
11.2 1.0 0.875 0.125
12.5 1.0 1.0 0.000

The largest difference is 0.575 which gives

x =

√
10 · 8
10 + 8

· 0.575 = 1.212

Evaluating the first few terms in the series,

1−K(x) = 2(0.052924− 1.84× 10−6 + · · · ) ' 0.1058

So this difference is not significant (it has a ∼ 10% chance probability).
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8. Observational Astronomy

(a) (10 points) You are planning to do UBV photometry of stars in galactic centre (α =
17h 45m 40.04s, δ = −29◦ 00′ 28.1”) using the Gemini North telescope on Mauna Kea
(155◦ 28′ 05”W, +19◦ 49′ 14”N). What is the optimal time of year for this observation,
and what will be the minimum possible airmass?

(b) (5 points) The UBV extinction coefficients for Mauna Kea are kU = 0.37, kB = 0.17, and
kV = 0.12. Roughly how large a correction would be needed to remove the atmospheric
extinction from the measured U-B and B-V colours?

(c) (5 points) The median atmospheric seeing at Gemini North is 0.64 arcsec FWHM (at
zenith for a wavelength of 0.5 um). Do you expect that the typical image quality would
be better or worse than this for your galactic-centre observations? Would the image
quality be better in U or in V?

Solutions:

(a) Ideally, we would like the CG to cross the meridian (where is is highest in the sky)
around midnight. The sidereal time s = α + h, where h is the hour angle. On the
meridian, h = 0, so the sidereal time would be about 17.5 hrs. On the vernal equinox,
typically March 20, the Sun is at α = 0, so the sidereal time at midnight is 12 hr on
that date, and increases by two hours each month. So the best time to observe the GC
will be (17.5 − 12)/2 = 2.75 months after Mar 20, so mid June would be best. On the
meridian, the GC will have a zenith angle of ζ = 19.82◦ + 29.00◦ = 48.82◦. The airmass
will be X = sec ζ = 1.52.

(b) The magnitude correction in each band is ∆m = −kmX. For X = 1.52 the (U,B,V)
corrections will be (−0.562,−0.258,−0.018) so the corrections to the colours would be
approximately ∆(U −B) = −0.304 and ∆(B − V ) = −0.240.

(c) Seeing is proportional to λ−1/5 and X3/5. Therefore, the following median values are
expected at X = 1.52:

Band Wavelength seeing
(um) (arcsec)

U 0.36 0.88
B 0.44 0.84
V 0.55 0.80

Full marks for saying that the image quality will be worse than 0.64 arcsec and that it
is worse in U than V.
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