
January 2008 Comprehensive Exam for Advancement to Candidacy
Day 1: January 7, 2008

Exam ID stickers: The proctor will provide everyone with two stickers
with serials numbers written on them. Make sure the numbers on both stickers
match. Stick one on the back of your student ID. Stick the other on the front
of your exam book. Do not lose your sticker—this is the only identifier linking
your exam booklet to you! You’ll need to show your sticker to claim credit for a
passing mark. If you use extra exam booklets, write your serial number on the
extra exam books by hand.

Today’s portion of the exam has 9 questions. Answer any six of the nine.
Do not submit answers to more than 6 questions—if you do, only the first 6 of
the questions you attempt will be graded. If you attempt a question and then
decide you don’t want to it count, clearly cross it out and write “don’t grade”.

You have 4 hours to complete 6 questions.

You are allowed to use one 8′′× 11′′ handwritten formula sheet (both sides),
and a handheld calculator.

Here is a possibly useful table of physical constants:

mass of 1 atomic mass unit 1 amu 1.66 × 10−27 kg
Avogadro’s constant NA 6.02 × 1023

Boltzmann’s constant kB 1.38 × 10−23 J/K
magnetic field of Earth 0.5 Gauss=5 × 10−5 Tesla
mass of the Sun Msun 2 × 1030 kg
Newton’s gravitational constant G 6.7 × 10−11 N m2 kg−2

Planck’s constant h 6.6 × 10−34 J·s
Planck’s constant, reduced h̄ 1.1 × 10−34 J·s
radius of the Earth Rearth 6.4 × 106 m
radius of the Sun Rsun 7 × 108 m
speed of light c 3.0 × 108 m/s
Stefan-Boltzmann constant σ 5.67 × 10−8 W m−2 K−4
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1. (a) Assuming that the atmosphere has a constant temperature (independent
of the altitude), estimate the height at which the density of the atmosphere is
half that at sea level. You can approximate that air is made entirely of diatomic
nitrogen (molecular weight = 28 amu).

(b) Suppose now you have a hot air balloon of radius 10 meters. Given that the
balloon and payload weigh a total of 200 kg when the balloon is empty, derive an
expression for the height the balloon will fly as a function of the temperature of
the gas inside the balloon. Hint: the air pressure at sea level is 101,000 Pascal
(N/m2).

(c) A more accurate calculation would account for the fact that the atmospheric
temperature does vary with altitude. So drop the assumption that the temper-
ature is constant, and instead suppose that the pressure and temperature of
air at different altitudes are related to each other by an adiabatic expansion.
(In other words, if you took a volume of air at sea level and move that air up,
the density will decrease because the volume of the air expands adiabatically.)
Show that for an adiabatic expansion

dP

P
=

γ

γ − 1

dT

T

where γ = 1.4 is the adiabatic exponent for diatomic nitrogen.
Use this to then calculate the change in temperature of the atmosphere in

degrees K if you go up 1 km, assuming that P and T are related according to
this expression.
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2. (a) Derive the orbital period of a planet orbiting a star of mass M in a
circular orbit of radius R.

(b) The orbits of several stars have been measured orbiting the massive black
hole at the centre of our Galaxy. One of them has an orbital period of 15 years,
and the orbital radius is 0.12 arcseconds (as seen from Earth). (Note: one degree
= 3600 arcseconds.) Take the distance to the centre of our Galaxy to be 8,000 pc
(1 pc = 206,265 AU, 1 AU = 1.5 × 108 km). Compute the mass of the black
hole. Express your answer in units of the Sun’s mass (mass Sun 2 × 1030 kg).
Assume that Newton’s Law of Gravity is applicable for orbits sufficiently far
from a black hole, and that the orbiting star satisfies this condition.
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3. A particle of mass m and charge q is trapped into a harmonic potential
V (x) = kx2/2 (assume that only one-dimensional motion along the x-axis is

possible). Besides this, an electric field ~E = Ex̂ is also turned on.

(a) Assuming classical motion, find the position x(t) of the particle, if x(0) =
v(0) = 0.

(b) Assuming quantum motion, what is the ground state energy of this
particle if we turn off the field (E = 0)? What is the expectation value of the
dipole moment of the particle, d ≡ qx, in the ground state for E = 0?

(c) Find the exact ground-state energy of the particle in the case that the
field strength E > 0. Now what is the expectation value of the dipole moment
of the particle, d ≡ qx, in the ground state?

(d) Assume that we have N such systems, in equilibrium at a temperature T
(there are no interactions between the different particles). Find how the dipole
moment and its variance 〈(d−〈d〉)2〉 vary with temperature. Sketch both curves
as a function of T .
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4. (a) Refer to the figure below. When the switch is opened, the light bulb
continues to glow brightly for some time. Why? Where does the energy come
from? Derive an expression for a quantity proportional to the optical power
irradiated by the bulb as a function of time after the switch is opened. (In this
circuit R2 represents the internal resistance of the light bulb, which you can
assume to be constant.)

Figure 1:

(b) Refer to the figure below. The initial situation is indicated in the sketch: the
capacitor C1 is charged up with charges +Q and −Q; the capacitor C2 has no
charge on either plate; the resistance R and the inductance L are doing nothing
while the switches are open. At time t = 0, the switches are closed. Derive an
expression for the voltage across C1 as a function of time.

Figure 2:
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5. (a) A bicycle travels in a straight line at moderate speed. In order to
initiate a right turn, the rider initially must swing the handlebars to the left
(counterclockwise), with the immediate consequence that the bike will lean into
the right turn. Explain why turning the handlebars to the left initiates a right
turn. (Hints: draw the velocity vectors for the vehicle just before and just after
turning the wheel counterclockwise. Draw the free body diagram for the vehicle
just after turning the wheel counterclockwise.)

(b) Once initiated, it is relatively easy to adjust the speed and angle of incli-
nation to execute a turn with a given radius of curvature. Assuming that the
centre of gravity of the bike and rider (considered a single rigid body of mass
M) is a distance L above the ground when the bike is vertical, and that the
mass of each wheel is m, and the wheel radius is r, show that the relationship
between the steady state lean angle θ, the speed v, and the turning radius R is

tan θ =
v2

R

2mr +ML

MLg

Discuss why this ”makes sense” physically. (Hint: look at the equation in the
limit that the mass of the rider and bike, and the height of the centre of gravity,
are much larger than the mass and radius of the wheel respectively.)
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6. Black holes have a radius of R = GM/c2, and a thermodynamic entropy
given by

S =
8π2GM2k

hc

(a) Derive the temperature of a black hole as a function of its mass

(b) Black holes can lose mass by radiating energy (Hawking radiation, which
you can assume is thermal). How long does it take a black hole of mass M
to evaporate completely? Explain your reasoning and derive a formula for how
long it takes.
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7. Magneto-tactic bacteria are small rod-shaped organisms about 1 µm
in length and 0.2 µm in diameter that can orient themselves by sensing the
direction of the Earth’s magnetic field. They have average densities about 10%
higher than the density of the water they live in.

(a) Do an order of magnitude calculation that demonstrates that these bacteria
cannot reliably tell “up” from “down” using the gravitational field gradient
across their body. (Hint: consider the effects of thermal motion).

(b) Each bacterium in fact contain small crystals of magnetite Fe3O4, a ferri-
magnetic material that acts like a compass needle inside the bacterium. If the
Earth’s magnetic field has a strength of 0.5 Gauss in Vancouver, estimate the
approximate size of the bacterium’s internal magnetic moment needed in order
for it to be able to reliably sense the direction of this field.

(c) The bacteria use the magnetic field direction primarily to distinguish up
from down. Treating the Earth’s magnetic field as a dipole field aligned with
the Earth’s axis of rotation, calculate the angle between the field direction in
Vancouver (latitude=49◦N) and the down direction. (Note: pretend the Earth’s
magnetic poles are aligned with the rotational poles, and ignore the fact that in
reality the magnetic north pole is displaced from the true north pole.)
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8. A rocket of mass m0 is propelled by a giant monochromatic laser mounted
on the back of the rocket. The laser emits a beam with a power of P watts and
a frequency of f0, both measured in the rest frame of the rocket. When the
beam is turned on, the rocket is driven in the opposite direction by the recoil.

(a) At t = 0 the laser is turned on, with the rocket initially at rest in the Earth’s
reference frame. Calculate the instantaneous acceleration of the rocket.

(b) If the rocket is moving at velocity v, what is the instantaneous beam power
as measured in the Earth’s reference frame?

(c) The laser is kept going until the speed of the rocket reaches v = 0.9c. What
is the rest mass of the rocket at this point?
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9. At time t = 0 the wavefunction of the hydrogen atom is

ψ(~r, 0) =
1√
10

(2ψ100 + ψ210 +
√

2ψ211 +
√

3ψ21−1)

where the subscripts are values of the quantum numbers n, l, m (let’s here
ignore spin and radiative transitions).
(a) What is the expectation value for the energy of this system? (Hint: the
ground state energy of hydrogen is -13.6 eV.)

(b) What is the probability of finding the system with l = 1,m = +1 as a
function of time?

(c) What is the probability of finding the electron within 10−10 cm of the proton
(at time t = 0)? A good approximate result is acceptable here. Note that the
radial wavefunctions Rnl(r) for a hydrogen atom are:

R10(r) ∝ exp(−r/a0)

R21(r) ∝ r exp(−r/2a0)

where a0 = 5.3 × 10−11 m is the Bohr radius.

(d) How does this wave function evolve in time, i.e. what is ψ(r, t)?
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January 2008 Comprehensive Exam for Advancement to Candidacy
Day 2: January 8, 2008

Exam ID stickers: Yesterday you were given a sticker with a serial number
on it to stick to the back of your student ID. Write that serial number on all of
your exam books! Do not lose your sticker—this is the only identifier linking
your exam booklet to you!

Today’s portion of the exam has 9 questions. Answer any six of the nine.
Do not submit answers to more than 6 questions—if you do, only the first 6 of
the questions you attempt will be graded. If you attempt a question and then
decide you don’t want to it count, clearly cross it out and write “don’t grade”.

You have 4 hours to complete 6 questions.

You are allowed to use one 8′′× 11′′ handwritten formula sheet (both sides),
and a handheld calculator.

Here is a possibly useful table of physical constants:

mass of 1 atomic mass unit 1 amu 1.66 × 10−27 kg
Avogadro’s constant NA 6.02 × 1023

Boltzmann’s constant kB 1.38 × 10−23 J/K
magnetic field of Earth 0.5 Gauss=5 × 10−5 Tesla
mass of the Sun Msun 2 × 1030 kg
Newton’s gravitational constant G 6.7 × 10−11 N m2 kg−2

Planck’s constant h 6.6 × 10−34 J·s
Planck’s constant, reduced h̄ 1.1 × 10−34 J·s
radius of the Earth Rearth 6.4 × 106 m
radius of the Sun Rsun 7 × 108 m
speed of light c 3.0 × 108 m/s
Stefan-Boltzmann constant σ 5.67 × 10−8 W m−2 K−4
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1. Two long, hollow, and coax-
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Figure 3:

ial conducting cylinders, with radii a
and b, are lowered into a tub of fluid
with dielectric constant κ. A voltage
V is applied between the two cylin-
ders. The fluid is observed to rise
up some height h into the volume be-
tween the cylinders. Calculate h.

12



2.
A quantum mechanical potential
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Figure 4:

in one dimension is defined by:

V (x) =







20 x < 0
0 0 ≤ x ≤ 1
40 x > 1

In this problem set h̄ = 1, and the
mass m = 1/2. There are two bound
states E1 ≈ 5.06 and E2 ≈ 18.25,
and a continuum of unbound states
such as E3 and E4, as indicated on
the graph.

(a) Qualitatively sketch the spatial
part of the wavefunction ψ(x) for each
of the four energies shown in the di-
agram.

(b) Consider instead a potential given by

V (x) =

{

0 x ≤ 0
V0 x > 0

A particle with mass m = 1/2 and energy E > V0 approaches the potential
from the left. What is the probability that the particle is reflected back towards
x = −∞? (You can again set h̄ = 1.)
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3.
An atomic interferometer is ori-
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Figure 5:

ented in the vertical plane in a grav-
itational field of strength g. Atoms
of mass m are injected at the bottom
left with velocity v. The beam is split
by a beam-splitter, with one half de-
flected straight up and the other half
continuing horizontally. The split beams
bounce off “atomic mirrors” (upper
left and bottom right) and pass through
a second beam-splitter in the upper
right. A detector (indicated by the
star) counts the number of atoms ar-
riving. As the separation x between
the two vertical arms of the inter-
ferometer is varied, the count rate changes
as shown in the bottom graph. Cal-
culate the strength of the gravitational
field g as a function of m, y, D, and
v.

14



4. (a) Show that for a gas sphere of constant density, the gravitational
potential energy is −(3/5)GM 2/R where R is the radius and M the mass.

(b) The Sun radiates energy at the rate of 3.9 × 1026 J/sec. Assuming that
the Sun is a uniform sphere (R = 7 × 108 m) with mass (M = 2 × 1030 kg),
determine how much its radius would have to shrink each year if the radiated
energy were strictly due to gravitational contraction.

(c) If this were the only source of energy for the Sun, what would the maximum
present age of the Sun be, assuming its power output has been constant since
its formation?
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5. (a) Given that the central pressure of the Sun is 2.3×1016 Pa (1 Pa=1 N/m2)
and that its central temperature is 1.5 × 107 K, using the principle of hydro-
static equilibrium (pressure balances gravity) estimate the central temperature
and pressure of Sirius whose mass is 2.25 Msun and whose radius is 2 Rsun.
Clearly indicate any other assumptions that you have used.

(b) From dimensional analysis and an equation of state P ∝ ρ5/3 (where
P=pressure and ρ=mass density), show that white dwarfs get smaller as they
get more massive.
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6. A DVD has an outer diameter of 12 cm and an inner diameter of 4 cm.
Holding the disk under white light you notice an iridescent rainbow of colors
reflecting off the disk. Based on this give an order-of-magnitude calculation of
the number of data bits encoded on the DVD.
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7.

(a) A cloudless sky appears blue because particles (molecules, dust, etc...) in the
atmosphere preferentially scatter shorter wavelength sunlight (Rayleigh scatter-
ing). In addition to being colored, is visible skylight polarized? If so, explain
why, and describe the pattern of polarization. If on the other hand it is not
polarized, explain why not.

(b) Determine the total electro-magnetic power radiated from a pulsating spher-
ical shell of charge Q. Assume that the total charge, Q, is uniformly distributed
across the surface of a sphere and that the sphere’s radius is dilating according
to R(t) = A+R0 sin(ωt), where A > R0. Hints: treat the sphere as a collection
of oscillating electric dipoles. And no, this part has nothing to do with part (a).
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8. The lift force on a flying bird is FL ∝ SV 2, where S is the surface area
of the bird’s wing and V is the bird’s velocity. The drag force is FD ∝ AV 2,
where A is the frontal area of the bird into the wind.

(a) There is some minimum flying speed needed to overcome the force of gravity
and keep the bird airborne. The speed scales as Mα, where M is the mass of the
bird and α is a constant. Calculate α. (You may assume that birds of different
masses have equal densities and similar body plans.)

(b) The metabolic power of a bird is observed to increase in proportion to
M3/4. Show that the power that the bird must expend to overcome the drag
force increases faster than this, therefore limiting the maximum possible size of
a bird capable of sustained flight.
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9. A nucleon, which carries one unit of “baryon number”, is a bound state
of three quarks, each carrying one-third of a unit of baryon number. If one
compresses a gas of nucleons to sufficiently high density, the nucleons will unbind
and turn into a gas of quarks. Both quarks and nucleons are spin-1/2 particles
obeying Fermi statistics.

The aim of this problem is to construct a simple model of the phase transition
at zero temperature from a nucleon gas to a quark gas. In this problem neglect
all internal quantum numbers of the nucleon (proton or neutron), and of the
quark (color and flavor), other than spin. Also, assume that the nucleons are
a non-interacting non-relativistic gas, and that the quarks are fully relativistic
particles so that the kinetic energy of a quark of momentum p is cp, where c is
the speed of light.
(a) Consider only zero temperature where the nucleon and quark gases are both
degenerate.

1. Give the density of the nucleon gas, nn, in terms of its Fermi momentum,
pn, and give the mean energy, En, per nucleon in the gas in terms of nn.

2. Give the density, nq, of the quark gas in terms of the quark Fermi mo-
mentum, pq, and give the mean kinetic energy, Kq, per quark in terms of
nq.

3. If a gas of nucleons unbinds at a given fixed density, nn, the corresponding
density nq of the quark gas equals 3nn. How are the nuclear and quark
Fermi momenta at this density related?

(b) Assume that the quarks prefer to be bound in nucleons because the unbound
state of quarks has an extra energy per unit volume, B, a positive constant. The
total energy per quark in the quark gas is thus Eq = Kq +B/nq.

1. Show that at low densities the nucleon gas has a lower energy per baryon
than the quark gas, while at very high densities the quark gas has the
lower energy per baryon.

2. Sketch the energies per baryon in the two phases as a function of baryon
density, clearly labelling the curves and the baryon density, nT , at which
the system undergoes a transition from the nucleon to quark phase.

3. Write down the equation determining the transition density nT between
the two phases.
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