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ABSTRACT 
 

We investigate experimentally and computationally the nonlinear replication of surface 
shapes during epitaxial growth.  Experimental measurements of surface shapes consisting of 
atomic force microscope (AFM) images of epitaxially grown GaAs are compared with surface 
shapes computed from continuum growth equations with a conservative or a non-conservative 
nonlinear term.  Both the non-conservative and the conservative nonlinear terms are found to be 
consistent with the experiments, although the conservative nonlinearity is preferred on physical 
grounds.  Kinetic Monte Carlo (KMC) simulations cover a wider range of spatial frequencies, 
which enables the two different nonlinear terms to be distinguished.  In this case, the observed 
surface shapes are consistent with the conservative nonlinearity.   
 
INTRODUCTION 
 

Regrowth on patterned semiconductor substrates is important in the fabrication of optical 
devices.  An improved understanding of how surface shapes evolve during growth may create 
opportunities to improve control over the grown structures, including better lateral pattern 
definition as well as provide information on microscopic growth phenomena.  Continuum 
equations are commonly used to model the morphology of surfaces during thin film deposition 
[1].  A random driving term is included in the growth equation to simulate the random arrival of 
atoms from the vapour, which leads to the kinetic roughening phenomenon.  The scaling 
behaviour of the interface width as a function of time and surface area has been worked out 
theoretically and computationally for a variety of growth equations that are consistent with the 
required symmetries [1,2].  Experiments designed to determine which growth equation describes 
the system of interest typically involve measuring the scaling parameters for the interface width 
as a function of time and spatial frequency and comparing these values with theoretical values.  
If the scaling parameters obtained from the experimental data match the theoretical values for 
one of the growth equations, then one can conclude that this equation describes the experimental 
system of interest.  

Two widely used growth equations are the KPZ and the MBE equations [1]: 
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where h(x,t) is the surface height and η(x,t) is the noise associated with the random arrival of 
atoms.  The coefficients in the equations arise from the underlying physical phenomena on the 
surface during growth.  The growth equations are assumed to be in the moving frame of 
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reference for an average growth rate, F, and are valid in the limit of low amplitude, low spatial 
frequency surface topography. 

Both equations 1 and 2 are nonlinear, but the nonlinearity in the MBE equation is 
conservative and in the KPZ equation it is non-conservative.  In this context, non-conservative 
means that the surface topography contributes to the average growth rate.  Also, the right hand 
side of equation 1 cannot be written as the divergence of a surface current.  Both terms in the 
KPZ equation are second order in the spatial derivatives, while in the MBE equation they are 
both fourth order in the spatial derivatives.  Terms of different order are not normally combined 
in growth equations as the higher order terms can be neglected at large length scales or small 
spatial frequencies (“hydrodynamic limit”) [2].  In this case the higher order terms are referred to 
as irrelevant.  As the name suggests, irrelevant terms are not of much interest from a scaling 
perspective.  However, there is no reason why they should not be important in real systems in a 
particular range of spatial frequencies.  We show below that certain growth systems are better 
represented using an equation with an irrelevant term. 

 
EXPERIMENTAL RESULTS AND CONTINUUM GROWTH EQUATIONS 
 

A great deal is known about epitaxial growth of GaAs by molecular beam epitaxy, and as a 
result, it is a good system for testing growth models.  In order to understand the shape evolution 
of GaAs surfaces quantitatively, we proceed by comparing the predictions of the growth 
equations with the shape and power spectral densities of the surfaces of the grown epitaxial 
films.   

Comparison of experimental measurements of the surface morphology of GaAs layers 
grown on substrates with low amplitude surface roughness, show good agreement with 
numerical solutions of the KPZ equation, but poor agreement with the MBE equation [3].  This is 
surprising since the deposited layers were grown in the regime where all of the deposited Ga 
atoms stick to the surface and the growth equation should be conservative.  One might argue that 
there are higher order terms, which are neglected in the KPZ equation, that maintain conservative 
growth.  Growth along the outward surface normal is the usual explanation for the KPZ 
nonlinearity.  Earlier, we suggested that this might happen if the growth took place from a highly 
mobile surface adatom layer, which could act as a 2D gas phase.  In this case, the coefficient λ of 
the nonlinear term in the KPZ equation should be equal to the growth rate.  However, growth 
simulations show that the nonlinearity is much bigger than this and requires a λ value that is 
more than an order of magnitude larger than the growth rate F [3].  

Another possibility is that the nonlinearity is not a geometrical effect associated with growth 
along the outward normal and that it has a different origin.  We consider instead a mixed-order 
conservative equation that combines the linear term from the KPZ equation with the nonlinear 
term from the MBE equation: 
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In this case, the nonlinear term has a different microscopic origin and there is no requirement 
that the coefficient of the nonlinear term be equal to the growth rate.  In practice, if the surface 
morphology is only measured over a small spatial frequency range, and the coefficient of the 
nonlinear term is not too large, the two different nonlinear terms may be difficult to distinguish 
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Figure 1.  GaAs epitaxy on random surfaces: (a) AFM image of thermally desorbed starting surface (z-range 50 
nm); (b) AFM image after 90 minutes of growth at 0.8 ML/s (z-range 6 nm); (c) simulated image based on equation 
3 (z-range 6 nm). Image sizes are 10×10 µm.  
 
experimentally. 

Figure 1b shows an AFM image of a 1.2 µm thick GaAs epitaxial layer deposited on a 
thermally cleaned substrate, such as that shown in figure 1a.  As discussed elsewhere, the 
mounds observed in this image result from incomplete smoothing of the surface roughness 
produced during the thermal desorption of the surface oxide [3,4].  The surface morphology can 
be characterized as consisting of smoothly rounded mounds separated by v-shaped valleys. This 
surface lacks inversion symmetry, which means that the growth equation must be nonlinear.  A 
numerical simulation of the surface structure using equation 3 is shown in figure 1c using the 
method discussed earlier [3].  The simulated surface morphology was computed using the AFM 
image of a thermally cleaned GaAs substrate as the initial condition.   

The power spectral density for this surface is shown in figure 2, along with the power 
spectral densities computed from the simulated surface structures using equations 1 and 3.  The  
characteristic length (peak in PSD) is associated with the spacing of the pits on the starting 
surface.  In the KPZ simulation (figure 2a), we used non-conservative noise and ν x= 10 nm2/s,  
νy = 1 nm2/s and λ  = 12 nm/s, where the x is in the [110 ] direction and y is the [110] direction.  
The amplitude of the noise was adjusted to match the power spectral density at high spatial 
frequency.  In the simulation of equation 3 (figure 2b), we also used non-conservative noise and 
the parameters νx = 10 nm2/s, νy = 1 nm2/s and Λ = 106 nm3/s.  We can compare the relative 
magnitudes of the conservative and non-conservative nonlinear terms in equations 1 and 3, at a 
given spatial frequency q, by replacing the gradient operators by q.  If we take q = 3 µm-1 as a 
typical q value in the range where the nonlinear term is important, then we would expect λ = q2Λ 

= 9 nm/s.  This agrees well with the KPZ simulation, where we used λ = 12 nm/s.  As pointed 
out earlier, λ is much larger than the growth rate, which is about 0.3 nm/s in these experiments.  
If the correct nonlinear term were the conservative fourth order term in equation 3, then one 
would not expect λ determined from a fit to the KPZ equation to have any relationship to the 
growth rate. 

The spatial frequency range obtained experimentally from AFM images can be expected to 
be accurate over less than two orders of magnitude.  The low spatial frequency limit is set by the 
size of the imaged area and the resolution of the AFM, and the number of pixels in the image and  
the size of the AFM tip set the upper spatial frequency limit.  In the experimentally accessible 
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Figure 2.  Power spectral density along [110] direction for epitaxial GaAs films grown on random surfaces. (a) The 
symbols are experimental data for the starting surface (top), after 10 min of growth (middle) and 150 minutes of 
growth (bottom) for a 1 ML/s growth rate.  KPZ simulations are indicated by the dotted and solid lines, according to 
10 and 150 min of growth, respectively. (b) The experimental data for the starting surface is the same (top) along 
with data after 90 minutes of growth at 0.8 ML/s (bottom).  The solid line is a simulation using equation 3.  
Substrate temperature was 550°C for all growths.  The power spectral densities for spatial frequencies less than ~2 
µm-1 are not considered to be reliable. 
 
spatial frequency range, the KPZ equation (1) and the mixed-order equation 3 give similarly 
good fits to the measured power spectral density for the GaAs surface. Qualitatively, both 
equations produce a mounded surface morphology with v-shaped valleys, however, the 
experimental data is not sufficiently precise to allow us to choose between the two nonlinear 
terms.  Physically, equation 3 is more appealing as it is conservative, which is consistent with the 
MBE growth process.   
 
SOLID ON SOLID MODEL SIMULATIONS 
 

The continuum growth equations can also be compared with kinetic Monte Carlo (KMC) 
simulations of a solid-on-solid (SOS) model.  These simulations are computational experiments 
in which all of the microscopic “physical” phenomena are known.  We use a square grid and a 
mono-atomic crystal.  Adatoms are free to hop on the square lattice, attach and detach from 
existing islands, or nucleate with other diffusing adatoms and form monolayer islands.  Each 
atom bonds to the surface with an activation energy Eact = Esub + mElat, where m is the number of 
lateral nearest neighbors.  The parameters used in the simulations were: Esub = 1.25 eV, Elat = 
0.35 eV, F = 1 ML/s and T = 575°C. The SOS model is restricted, in the sense that double height 
steps are not allowed.  To incorporate a second order KPZ-type linear term in the growth 
equation, we include a step-edge potential barrier that favours downhill adatom migration.  This 
is the so-called inverse Ehrlich-Schwoebel barrier.  While it remains unclear exactly what the 
magnitude of this barrier is in the case of GaAs, it is clear that the surface tends to smooth, and 
that a net downhill adatom drift mechanism is necessary in order to explain the experimental 
data.  This could also be achieved by incorporating the effects of downhill funneling [5], or the 

JJ9.6.4



 

 

knock-out effect [1].  However, these are both non-equilibrium effects that cannot explain the 
continued smoothing that is observed during annealing [6].  For simplicity, we use a negative ES 
barrier (attractive step edge potential) of magnitude EES = -0.05 eV in order to describe the 
experimentally observed bias at the step-edge.  This choice might seem counter-intuitive, 
however, considering the repeated experimental indication that the net direction of adatom drift 
is downhill, such a choice constitutes the simplest explanation to interlayer transport in this 
material system both during growth and annealing [2,3,6].  The simulation is carried out on a 
600×600 lattice with a 1D sinusoidal surface topography as the initial condition [6].  Cross-
sectional scan lines from the simulations are shown in figure 3.  The scan lines are projections of 
the average surface height along the 2D surface parallel to the gratings.   
 
Three different sinusoidal topographies were used as initial conditions with different amplitudes 
and spatial frequencies, as shown in figure 3.  The choice of starting conditions is designed to 
illustrate the effects of amplitude and spatial frequency on the shape of the surface during 
growth.  Figure 3a-c show the surface cross sections after depositing 0, 30, 60, and 90 
monolayers of material.  The first panel (a) shows the topography for the long wavelength, low 
amplitude starting surface.  This surface shows a relatively weak nonlinear growth as indicated 
by the slightly v-shaped valleys for the thickest deposited layers.  The second panel (b) shows 
the effect of doubling the spatial frequency.  As expected, the amplitude of the topography 
decays faster in the second panel, since in the Fourier domain both the linear and nonlinear terms 
on the right hand side of the growth equations increase with spatial frequency as ~q2 due to the 
gradient operators.  In addition, growth on the short period grating is significantly more 
nonlinear than for the longer period grating, and v-shaped valleys form after a relatively small 
decay in amplitude.  If one doubles the spatial frequency of the surface, the amplitude of both the 
linear term and the nonlinear term in the KPZ equation increases by a factor of four.  If one 
rescales 

 
Figure 3.  Effect of spatial frequency and amplitude of surface topography on surface evolution. Projected 2D SOS 
simulations with three different sinusoidal initial topographies: (a) 600 atom period, 4 atom amplitude (i.e. 9 discrete 
atomic levels); (b) 300 atom period, 4 atom amplitude; and (c) 300 atom period, 8 atom amplitude.  Part (d) shows 
the smoothing rate as a function of the pitch (or spatial frequency) of low amplitude gratings similar to (a).  An atom 
diameter is assumed to be 0.3 nm. 
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the time by a factor of four to take into account the faster decay rate the surface shape evolution 
will be the same.  However, the simulation shows that the relative importance of the nonlinearity 
increases when the spatial frequency is increased.  This result is inconsistent with the KPZ 
equation but consistent with equation 3, where the ratio of the nonlinear term to the linear term 
increases by a factor of four if the spatial frequency is doubled.  Therefore, the KMC simulations 
are qualitatively consistent with equation 3.  The third panel, figure 3c, shows that doubling both 
the amplitude and the spatial frequency of the starting surface produces a rather complex 
nonlinear distortion of the surface in addition to v-shaped valleys.  This may be an indication that 
the description of the growth in terms of asymptotic growth equations is breaking down for the 
relatively large surface gradients in figure 3c.  

From theoretical considerations, we expect the negative step edge barrier in the SOS 
simulations to produce a second-order linear term in the growth equation, similar to equations 1 
and 3 [7].  To test this prediction, KMC simulations were performed on a series of sinusoidal 
starting surfaces with different spatial frequencies.  The smoothing rate of the different surfaces 
is plotted on a log-scale in figure 3d as a function of spatial frequency.  We determined the 
smoothing rate by fitting an exponential to the RMS surface height as a function of growth time.  
The best-fit line shows a q2.2 dependence on spatial frequency.  This is close to the q2 
dependence expected for smoothing with a second order linear term.  Since the non-linear term 
will also contribute to surface smoothing some deviation from q2 can be anticipated.   
 
CONCLUSIONS 

 
In conclusion, kinetic Monte Carlo simulations of surface shapes during film growth on 
patterned substrates with negative Ehrlich-Schwoebel barriers are compared with a description 
based on continuum growth equations.  The KMC simulations are consistent with a continuum 
growth equation in which the linear term is second order in the spatial derivative (∇h)2 and the 
nonlinear term is fourth order in the spatial derivative (∇2(∇h)2).  This mixed order growth 
equation is also consistent with experimental atomic force microscopy images of GaAs epitaxial 
layers grown on substrates with a random initial surface topography.  However, the spatial 
frequency range of the experimental data for the GaAs surfaces is not sufficiently large to 
distinguish the fourth order nonlinear term from the second order one.  Since the GaAs growth is 
conservative, the conservative fourth order nonlinear term is more appealing physically than the 
second order nonlinear term, which is non-conservative.    
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