Applications of Classical Mechanics

Physics 350 2017W
Homework Assignment \#1
Due: Friday, February 1, 2019 (by 5PM)

1. The Half Pipe (a.k.a. The Simple Pendulum) [3 points]
(a) and (b) as in Problem 1.50 (Taylor).
(c) Repeat (b) but now plot the solutions between $t=160 \mathrm{~s}$ and $t=170 \mathrm{~s}$. By adjusting the frequency of the approximate solution (Eq. 1.57 of Taylor) to $\omega_{\text {eff }} \simeq(1-\epsilon) \omega$ determine the approximate value of ϵ where the solutions "phase up" (the two curves almost exactly overlap).

2. The Hoverocket [1 points]

Problem 3.8 (Taylor).
3. Multistage Rockets [2 points]

Problem 3.12 (Taylor).
4. The x^{4} Oscillator [2 points]

Problem 4.29 (Taylor).

5. The Pendulum: Part II [3 points]

(a) as in Problem 4.38 (Taylor).
(b) as in Problem 4.39 (Taylor).
(c) Compare the percentage change in τ derived with this approximation to the percentage change in ω you found in Problem 2. (Compare the same amplitude).
6. The Soap Bubble Problem [2 points]

Problem 6.19 (Taylor).
7. The Cycloid is an Isochrone [3 points] Problem 6.25 (Taylor). In what sense is motion along this curve Harmonic motion?
8. Two Particles: Proof of Lagrange's Equations in Any Coordinate System [1 point] Problem 7.6 (Taylor).

