Applications of Classical Mechanics

Physics 350 2018W

Challenge Problem Preview \#1
Solve in Class: Monday, January 14, 2019 during Tutorial

Calculus of Variations

Problem:
(a) Write down a functional

$$
S[y(x)]=\int_{x_{0}}^{x_{1}} d x f\left(y, y^{\prime}, x\right)
$$

equal to the total distance between two points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ along the curve $y(x)$ and use the method of variations $[y(x) \rightarrow y(x)+\alpha \eta(x)]$ to find the differential equation that $y(x)$ must satisfy such that $S[y(x)]$ is extremal. Solve this equation and show that $y(x)$ must be the unique straight line passing through the two points.
(b) Imagine that the integrand $f\left(y, y^{\prime}, x\right)$ were left unspecified - corresponding to a different optimization problem than the total distance problem from part (a). Following the same steps and using the same method of variations what differential equation would you arrive at that $y(x)$ must satisfy such that $S[y(x)]$ is extremal?

