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Theory of Equilibrium Flux Lattices in Unconventional Superconductors
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We investigate equilibrium flux lattice structures in superconductors with unconventional order
parameters, such as high-Tc cuprates, using a generalized London model with nonlocal electrodynamics
derived from a simple microscopic model. We find a rich phase diagram containing triangular, centered
rectangular, and square lattices with various orientations relative to the ionic lattice, as a function of
magnetic field and temperature. [S0031-9007(97)03917-3]
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Existence of a mixed state, characterized by a regu
array of magnetic flux lines penetrating the material, is pe
haps one of the most striking properties of type II supe
conductors. The original pioneering work of Abrikoso
[1], based on the solution of Ginzburg-Landau (GL) equ
tions near the upper critical fieldHc2, predicted a trian-
gular flux lattice (FL). This prediction was subsequent
verified by low field magnetic decoration experiments o
a variety of conventional superconductors. In some co
pounds neutron scattering experiments revealed deviati
from perfect triangular lattices in stronger fields [2] whic
were attributed to anisotropies in the electronic band str
ture and other effects and were modeled by GL theor
containing additional higher order derivative terms reflec
ing the material anisotropies [3].

One would expect even richer behavior of flux lattice
in the new class of heavy fermion and copper-oxide s
perconductors as these exhibit highly anisotropic ele
tronic structures and, very likely, order parameters w
unconventional symmetries involving nodes in the ga
In high-Tc cuprates much of the experimental and the
retical effort has been focused on the sizable region
the phase diagram just belowTcsHd in which the vortex
lattice properties are dominated by thermal fluctuatio
[4]. While understanding the physics of this fluctuatio
dominated regime poses an intriguing and difficult stat
tical mechanics problem, investigation of the equilibriu
vortex lattice structures at low temperatures may provi
clues about the microscopic mechanism in these materi
So far such investigations have been limited to t
YBa2Cu3O72d compound [5,6], revealing vortex lattice
with centered rectangular symmetry and various orien
tions relative to the ionic lattice. These have been mo
eled by phenomenological GL theories appropriate f
anisotropic superconductors, containing additional quar
derivative terms [7] or a mixed gradient coupling to an o
der parameter with different symmetry [8]. These work
found structures in qualitative agreement with experime
but their inherent shortcoming is the large number of u
known phenomenological parameters and the subsequ
lack of predictive power. Also, such GL theory has on
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been solved for vortex lattice nearHc2, which is experi-
mentally inaccessible in cuprates away fromTc. (See,
however, Ref. [9] which holds promise for full solution
at any field.) We have recently formulated a generaliz
London model [10] which is valid in an experimentall
accessible region of intermediate fieldsHc1 , H ø Hc2.
This model is also phenomenological, and it contains o
unknown parameter which controls the strength of t
symmetry breaking term. With increasing magnetic fie
this model predicts a continuous transition from triangul
to square FL. While no direct experimental evidence e
ists in cuprates at present to confirm such a prediction
similar transition has recently been observed in a boroc
bide material ErNi2B2C [11] and has been described by
similar London model [12].

In this Letter we present a microscopic derivation of th
generalized nonlocal London model for an unconvention
superconductor. Based on this model we formulate,
the first time, quantitative and largely parameter free
predictions for the behavior of the vortex lattice structu
as a function of temperature and magnetic field. O
theory is valid in a large part of theH-T phase diagram,
only restricted by the inherent domain of validity of th
London model,H ø Hc2, and T low enough that the
thermal fluctuations are unimportant. The central res
of this work is a prediction that the FL geometry i
unconventional superconductors will display a rich an
distinctive behavior as a function of field and temperatu
undergoing a series of transitions and crossovers, a
eventually attaining auniversal limit at T ­ 0. The
London free energy in this limit is nonanalytic, an
its long wavelength part is fully determined by th
nodal structure of the gap function. Such behavior
caused by the low-lying quasiparticle excitations with
the nodes and thus could never occur in conventio
superconductors with anisotropic band structures.

In general, the relation between the supercurrentj
and the vector potentialA of the magnetic induction
B ­ = 3 A is nonlocal in a superconductor, reflectin
the finite spatial extent of the Cooper pair,j0 [13].
Nonlocal corrections to physical quantities, such as t
© 1997 The American Physical Society 1555



VOLUME 79, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 25 AUGUST 1997

to

s

l
th

e

e
r
n
e
k
r
o
r

h
s
e

ic
b
t

a

e

g
ic

].
n

e

d
s

y

ch,

e

n.

by

ter
effective penetration depth, will be of orderk22, where
k ; l0yj0 is the GL ratio andl0 is the London penetra-
tion depth. For strongly type II materialssk ¿ 1d such
corrections are negligible. Since cuprate superconduc
fall well within this class (k is in excess of 50 for most)
local electrodynamics is always used. However, a clo
examination suggests that this might not be justified
all situations, if, as it is widely believed, these materia
exhibit nodes in the gap. In such a case in place of
usual coherence lengthj0 ­ yFypD0 one is forced to de-
fine an angle dependent quality,j0sp̂d ­ yFypDp̂ , which
diverges along the nodes. Clearly, in the vicinity of nod
the conditionl0yj0sp̂d ¿ 1 is no longer satisfied and, in
fact, the extremenonlocal limit is achieved. Nonlocal
corrections therefore cannot be dismissed in unconv
tional superconductors, especially at low temperatu
when quasiparticles selectively populate nodal regio
From the above argument it is also clear that such corr
tions will be highly anisotropic and will in general brea
the rotational symmetry of the flow field around the vo
tex, contributing an anisotropic component to the interv
tex interaction in the mixed state. Thus, on very gene
grounds, one may expect nontriangular FL structures
unconventional superconductors. We now illustrate t
idea by computing the FL geometry for the simplest ca
of a dx22y2 superconductor with cylindrical Fermi surfac
in the clean limit.

The nonlocal relation betweenj andA is conveniently
written in Fourier space [13]

jk ­ 2scy4pdQ̂skdAk . (1)

Here Q̂skd is the electromagnetic response tensor wh
can be computed, within the weak coupling theory,
generalizing the standard linear response treatmen
Gorkov equations [14] to an anisotropic gap. We find

Qijskd ­
4pT

l
2
0

X
n.0

*
D

2
p̂ŷFiŷFjp

v2
n 1 D2

p̂ sv2
n 1 D

2
p̂ 1 g

2
kd

+
,

(2)
wheregk ­ vF ? ky2, London penetration depthl22

0 ­
4pe2y

2
FNs0dyc2, Matsubara frequenciesvn ­ pTs2n 2

1d, and the angular brackets mean the Fermi surf
averaging. Equation (2) is valid for arbitrary Ferm
surface and gap function. For isotropic gap one recov
an expression recently derived by Koganet al. from
the Eilenberger theory [15]. One may simplify solvin
the London equation by writing it in terms of magnet
induction only. Eliminatingj from Eq. (1) using the
Ampère’s lawj ­ scy4pd= 3 B, one obtains

Bk 2 k 3 fQ̂21skd sk 3 Bkdg ­ 0 . (3)

For many purposes it is also convenient to write dow
the corresponding London free energyFL, such that
dFLydBk ­ 0 gives the above London equation,

FL ­
X
k

fB2
k 1 sk 3 BkdQ̂21skd sk 3 Bkdgy8p . (4)
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It is easy to see that in the local limitQijsk ! 0d ­
dijl22 one recovers the usual London free energy [13
Here l ; lsT d is the temperature dependent penetratio
depth (given below) for which it holds thatls0d ­ l0.

One may study FL structure using this formalism
provided the cores occupy only a small fraction of th
total volume, i.e., whenH ø Hc2 and k ¿ 1. To
account for the topological winding of the phase aroun
the core [10,13] it is then necessary to insert source term
rk on the right-hand side of Eq. (3). A commonly used
form is [16]

rk ­ sf0yVde2k2j2y2, (5)

where the prefactor ensures proper flux quantization (f0
is the flux quantum, andV is the area of the FL unit
cell). For a given kernelQ̂skd the FL symmetry is
then determined by minimizing the Gibbs free energ
GL ­ FL 2 HBy4p (where B ­ f0yV is the average
induction).

At long wavelengthŝQskd can be evaluated by expand-
ing expression (2) in powers ofg

2
k. The zeroth order term,

Q
s0d
ij ; dijl22 ­

4pT

l
2
0

X
n.0

*
D

2
p̂ŷFiŷFj

sv2
n 1 D

2
p̂d3y2

+
, (6)

is just the temperature dependent penetration depth whi
at low temperatures, has the well knownT -linear behav-
ior [17]: l22 ø l

22
0 f1 2 s2 ln 2dTyDdg for a dx22y2 su-

perconductor withDp̂ ­ Ddsp̂2
x 2 p̂2

y d and a cylindrical
Fermi surface. From now on we shall focus on this simpl
case. The leading nonlocal term is quadratic ink,

Q
s2d
ij ­ 2

4pT

l
2
0

X
n.0

*
D

2
p̂ŷFiŷFj

sv2
n 1 D

2
p̂d5y2

g2
k

+
. (7)

The expressionQij ­ dijl22 1 Q
s2d
ij is easily inverted to

leading order ink: Q21
ij ø l2fdij 2 l2Q

s2d
ij g. Substituting

this into Eq. (4) and specializing to fields along thez
direction we have

FL ­
X
k

B2
kf1 1 l2k2 1 l2j2sc1k4 1 c2k2

xk2
ydgy8p .

(8)

Here j ­ yFypDd and Dd is assumed to be a tempera-
ture dependent solution to the appropriate gap equatio
Dimensionless coefficientsc1 andc2 are given by

cm ­
l2

l
2
0

p3D2
dT

X
n.0

1
2p

Z 2p

0
du

D
2
p̂wm

sv2
n 1 D

2
p̂d5y2

, (9)

where w1 ­ ŷ
2
Fxŷ

2
Fy, w2 ­ sŷ2

Fx 2 ŷ
2
Fyd2 2 4ŷ

2
Fxŷ

2
Fy,

and the Fermi surface has been explicitly parametrized
the angleu betweenp̂ and thex axis, v̂F ­ scosu, sinud
and Dp̂ ­ Dd cos2u. Coefficients c1 and c2 depend
on temperature through a dimensionless parame
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t ; TyDd. From Eq. (9) one can deduce their leadin
behavior in the two limiting cases: fort ø 1 we find

c1 ­
p2

8
l2

l
2
0

1
t

, c2 ­ 24c1 , (10)

and fort ¿ 1 (i.e., nearTc)

c1 ­ a
l2

l
2
0

1
t4

, c2 ­ 8c1 , (11)

where a ­ z s5d s1 2 225dy8p2 ­ 0.012 72. In the
abovel also depends ont, but this will be unimportant
for the following qualitative discussion.

The free energy (8) formally coincides with the on
deduced previously from phenomenological conside
tions [10]. An interesting new feature emerging from t
present microscopic model is a sign reversal ofc2 at inter-
mediatet implied by Eqs. (11) and (10). At high tempera
turesc2 is found to be positive, in agreement with [10
It has been shown that such a term leads to centered
angular FL structure with principal axes oriented alongx
or y axes of the ionic lattice [cf. Fig. 1(a)]. The mag
nitude of the distortion from a perfect triangular lattic
sb ­ 60±d is controlled by the magnitude ofc2 and grows
with increasing magnetic field. Equation (11) shows th
at fixed field this distortion will initially grow with
decreasing temperature. At low temperatures Eq. (
predicts c2 , 0. This will lead to the same centere
rectangular FL rotated by 45± [cf. Fig. 1(b)]. Numerical
evaluation of Eq. (9) shows thatc2 passes through zero
at tp . 0.19. At this temperature the free energy (8)
isotropic and the FL will be triangular at all fields. Th
sign reversal ofc2 reflects the competition between th
two terms of different symmetry inw2 and is a unique
consequence of the gap function having nodes.

Another consequence of nodes is the fact that, as it
be seen from Eq. (10), bothc1 andc2 diverge as1yt for
t ! 0. This divergence signals that the response ten
Q̂skd is a nonanalytic function of k at T ­ 0 and the
expansion in powers ofg2

k breaks down. Formally this
is caused by the fact that atT ­ 0 at the nodal point the
expression (2) forQijskd contains a term proportional to
1yg

2
k. At T ­ 0 the frequency sum in (2) becomes a

FIG. 1. Two high symmetry orientations of centered recta
gular unit cell.
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integral which can be evaluated exactly with the result

Qijskd ­
1

l
2
0

ø
ŷFiŷFj

2 arcsinhy

y
p

1 1 y2

¿
, (12)

where y ­ gkyDp̂. For small k the dominant con-
tribution to the angular average comes from the clo
vicinity of nodes and can be evaluated by linearizingDp̂
around the nodes. One finds that the leading nonlo
contribution is linear in k rather than quadratic. For

Qij ­ dijl
22
0 1 Q

s1d
ij , we haveQs1d

xx ­ Qs1d
yy ­ 2msk.j0d

and Qs1d
xy ­ Qs1d

yx ­ 2msk,j0dsgnsk̂x k̂yd, where k. ­
maxsjkx j, jkyjd and k, ­ minsjkxj, jkyjd. Prefactor
m ­ p2y8

p
2 ­ 0.8723 is exact in the sense that al

corrections toQij areOsk2d. The resulting free energy a
T ­ 0 is

FL ­
X
k

B2
kf1 1 l2

0k2 1 msl2
0j0dk.sk2

. 2 k2
,dgy8p .

(13)

The nonlocal term is clearly nonanalytic ink. Its func-
tional form is universal in the sense that it is independe
of the Fermi surface structure (as long as it has tetrago
symmetry) and the prefactorm only depends on the angu
lar slope of the gap function and Fermi velocity at the nod
Numerical evaluation shows that the free energy (13) giv
rise to a centered rectangular FL structure, aligned withx
or y axes, but now with the apex angleb , 60±, depend-
ing nonmonotonicallyon the field. This suggests that ther
will be an additional transition at low temperature relate
to the nonanalytic behavior of the response tensor.

In order to map out the complete equilibriumH-T
phase diagram we have carried out a numerical com
tation of the FL structure using the full expression for th
response tensor̂Qskd, as given by Eqs. (2) and (12). We

FIG. 2. Equilibrium angleb as a function of reduced tem-
perature t ­ TyDd for various fields. Open symbols mark
lattice with orientation alongx or y direction while solid
symbols mark the lattice rotated by 45±. We usel0 ­ 1400 Å
andk ­ 68. Inset:b as a function of field at fixedT .
1557
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find that free energy has two local minima for centere
rectangular lattices aligned with two high symmetry d
rections shown in Fig. 1, as expected from the tetrago
symmetry of the problem. Which of the two becomes th
global minimum depends on temperature and field. T
results are summarized in Fig. 2. For high temperatu
the exact result agrees well with the one obtained from
long wavelength free energy (8). The deformation of th
lattice from perfect triangular grows with decreasing tem
perature, reaches a maximum, and then falls. Maximu
distortion occurs aroundt . 0.3, attaining b . 70± at
10 T. Extrapolating this field dependence (see inset
Fig. 2), the FL should become square aroundH ø 30 T,
but this field is outside the domain of validity of the
London model. At lower temperatures the distortion d
creases but instead of going all the way back to triangu
at tp, the lattice undergoes a first order phase transiti
to another centered rectangular lattice rotated by 45± and
with b , 60±. Further decrease of temperature causes
angle to grow again. We note that the precise temperat
at which it crosses 60± depends on field, but for all fields
is close totp ­ 0.19, as predicted by the long wavelengt
approximation. At a yet lower temperature we predict a
other first order transition to a centered rectangular latt
alongx (or y) with b , 60±. The free energy difference
between the two minima is very small in the region whe
the 45± rotated lattice wins. It is thus likely that the rea
system will remain in the metastable state and the exp
ment would detect only a smooth crossover from a latti
with b . 60± to the one withb , 60±.

The present calculation can be easily generaliz
to treat the effects of Fermi surface anisotropy. A
mentioned above tetragonal anisotropy will not modi
the T ! 0 universal behavior but may lead to quant
tative changes at higher temperatures. Orthorhom
anisotropy, on the other hand, will modify even th
T ! 0 limit. We expect that it will, to leading order,
merely rescale the coordinate axes, leading to the sa
structures as described above stretched by the approp
factor [10]. It may further remove the degenerac
between two equivalent lattices related by 90± rotation.
Another source of anisotropy neglected in our calculati
is the nonlinear Meissner effect studied by Yip and Sau
[18], associated with the shift of quasiparticle spectru
due to the superflow. Within the quasiclassical pictu
this would contribute terms,sj≠x0Bj3 1 j≠y0Bj3d to the
London free energy atT ­ 0, wherex0 and y0 are 45±

rotated coordinates. Our initial numerical results [1
indicate that, while not completely negligible, these term
will not significantly alter the behavior of FL reported in
Fig. 2. Also neglected in our calculation is the effect o
electronic disorder, which will remove the nonanalyticit
of Q̂skd at longest wavelengths, just as small finite tem
perature would. Since the FL is most sensitive toQ̂skd
at finite k , l21 (l is the vortex spacing), we expect ou
predictions to be robust with respect to weak disorder.
1558
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In conclusion, we have described distinctive feature
of the vortex lattice geometry associated with unconven
tional pairing and nonlocal response. NearTc our pre-
dictions are consistent with the existing phenomenologic
work [7,8,10], while at lowT we predict novel effects inti-
mately related to the nodal structure of the order paramet
which are not contained in GL-type theories. These wi
occur simultaneously with other unique effects predicte
previously, such as the,

p
H dependence of specific heat

[20]. Existing experiments probing the FL geometry in
cuprates [5,6] provide a somewhat conflicting picture, an
their theoretical analysis is complicated by the orthorhom
bic anisotropy and presence of twin boundaries. We ho
that the present theory will encourage more systematic e
perimental work, preferably on untwinned or tetragona
materials.

After this work was completed we learned about
paper by Kosztin and Leggett [21] which discusses effec
of nonlocality on the effective penetration depth ind-
wave superconductors. Where overlap exists their resu
appear consistent with ours.

The authors are indebted to A. J. Berlinsky an
Z. Tešánovic̀ for helpful discussions. This research
was supported by NSERC, the CIAR, and NSF Gran
No. DMR-9415549 (M. F.).
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