Physics 502 - Problem Set #6
(Dated: December 6, 2023)

1. Size of the Cooper pair

We calculate p?, the expectation value of r? with the Cooper pair wave function ¥ =

€’¥". The denominator reads
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The numerator is similar with an extra factor of r2
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In the last line we integrated by parts and neglected the surface term. To proceed from here

one can convert the momentum sums to energy integrals. The denominator gives
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In order to calculate the numerator we apply the same method and approximate the gradients

as follows
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We therefore have:
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Putting everything together and neglecting A with respect to hwp we find:
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Plugging in numerical values for typical elemental superconductors (vp ~ 10°m/s and A ~

1meV) we get p~ 4 x 10° A,




2. d-wave superconductivity in high 7T, cuprates

a. In order to diagonalize the Hamiltonian we first Fourier transform. This gives:
H = Z[—2t(COS k. + cosk,) — u]chckJ + A Z(COS ky — cosky)[crc g +hoc].
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The gap function is now proportional to (cos k, — cos k), a function that changes sign upon
7/2 rotation (k, — k, and k, — —k,). Had we defined the pairing with a positive sign on
each bond, the Fourier transformed function would be proportional to (cos k, +cos k). This
function has the full symmetry of the lattice and is known as s-wave.

To find the spectrum we need to diagonalize the Hamiltonian via the Bogoliubov-Vallatin

transformation. This can be done easily if we introduce a Nambu spinor

With this definition the Hamiltonian can be written as H = >, \I/Lhk\llk and the matrix hy
is given by
€k — M Ay
Ax —ec+p

The spectrum is given by the eigenvalues of the matrix +Fy with Ex = /(ex — p)2 + AL

b. The gap function vanshies along two lines,
Ax=0 = cosk, =cosk, = k,==k,

The lines intersect the underlying Fermi surface at four points. To find them we require

ex = 0 as well as the condition above
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At half filling 1+ = 0 and the gap nodes are located at (£7/2, £7/2); see figure 1.
c. Let us define new momenta k; = (k, + k,)/v2 — 7 and ky = (k, — k,)/v/2. [These
are momenta defined relative to the (7/2,7/2) nodal point and rotated by 45°.] We now

expand €, and Ay to leading order near the node,

e = K - Vieex|(njan/a) = V21,
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FIG. 1: The energy dispersion €y in the Brillouin zone with the diamond shape Fermi surface at
half filling denoted by a thick line. The nodal directions (diagonal red lines) intersect the Fermi

surface at four points (£7/2,+7/2).

Ak ~ k- ViAy| (/a2 = V2Ak.

The velocities are therefore hvrp = /2ta and hva = V2Aa (where we have added the

constants a and h that were implicitly set to 1).

d. The density of states is given by:
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where we have introduced scaled coordinates ()1 = vpk; and Qo = vaks.
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Using the above density of states we can calculate the low-temperature specific heat
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This gives ¢, oc T?. The result is valid when kpT < A; for temperatures approaching T,

one must include the T-dependence of the gap function A into account when calculating the

specific heat.



