
Physics 502 - Problem Set #6

(Dated: December 6, 2023)

1. Size of the Cooper pair

We calculate ρ2, the expectation value of r2 with the Cooper pair wave function Ψ =∑
k gke

ikr. The denominator reads∫
d3r|Ψ(r)|2 =

∫
d3r
∑
k,k′

gkg
∗
k′ei(k−k

′)·r =
∑
k,k′

gkg
∗
k′δk,k′ =

∑
k

|gk|2.

The numerator is similar with an extra factor of r2∫
d3rr2|Ψ(r)|2 =

∫
d3rr2

∑
k,k′

gkg
∗
k′ei(k−k

′)·r =
1

i

1

−i

∫
d3r
∑
k,k′

gkg
∗
k′∇k∇k′ei(k−k

′)·r

=

∫
d3r
∑
k,k′

(∇kgk)(∇k′g∗k′)ei(k−k
′)·r =

∑
k,k′

(∇kgk)(∇k′g∗k′)δk,k′ =
∑
k

|∇kgk|2.

In the last line we integrated by parts and neglected the surface term. To proceed from here

one can convert the momentum sums to energy integrals. The denominator gives

∑
k

|gk|2 ≈
∫
dεg2(ε) =

∫ 2εF +h̄ωD

2εF

dε
1

(ε+ ∆− 2εF )2
=

(
1

∆
− 1

∆ + h̄ωD

)
.

In order to calculate the numerator we apply the same method and approximate the gradients

as follows

∇k = ∇kεk
d

dε
≈ h̄vF

d

dε
.

We therefore have:∑
k

|∇kgk|2 = h̄2v2
F

∫ 2εF +h̄ωD

2εF

dε

∣∣∣∣ ddε
(

1

ε+ ∆− 2εF

)∣∣∣∣2 =

h̄2v2
F

∫ 2εF +h̄ωD

2εF

dε
1

(ε+ ∆− 2εF )4
=

1

3
h̄2v2

F

(
1

∆3
− 1

(∆ + h̄ωD)3

)
.

Putting everything together and neglecting ∆ with respect to h̄ωD we find:

ρ ≈ h̄vF√
3∆

.

Plugging in numerical values for typical elemental superconductors (vF ' 106m/s and ∆ '

1meV) we get ρ ≈ 4× 103 Å.
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2. d-wave superconductivity in high Tc cuprates

a. In order to diagonalize the Hamiltonian we first Fourier transform. This gives:

H =
∑
k,σ

[−2t(cos kx + cos ky)− µ]c†k,σck,σ + ∆
∑
k

(cos kx − cos ky)[ck,↑c−k,↓ + h.c.].

The gap function is now proportional to (cos kx− cos ky), a function that changes sign upon

π/2 rotation (kx → ky and ky → −kx). Had we defined the pairing with a positive sign on

each bond, the Fourier transformed function would be proportional to (cos kx+cos ky). This

function has the full symmetry of the lattice and is known as s-wave.

To find the spectrum we need to diagonalize the Hamiltonian via the Bogoliubov-Vallatin

transformation. This can be done easily if we introduce a Nambu spinor

Ψk =

 ck

c†−k

 .

With this definition the Hamiltonian can be written as H =
∑

k Ψ†khkΨk and the matrix hk

is given by

hk =

εk − µ ∆k

∆k −εk + µ

 .

The spectrum is given by the eigenvalues of the matrix ±Ek with Ek =
√

(εk − µ)2 + ∆2
k.

b. The gap function vanshies along two lines,

∆k = 0 ⇒ cos kx = cos ky ⇒ kx = ±ky

The lines intersect the underlying Fermi surface at four points. To find them we require

εk = 0 as well as the condition above

cos kx + cos ky = − µ
2t

2 cos kx = − µ
2t

⇒ kx = ArcCos
(
− µ

4t

)
= ±ky

At half filling µ = 0 and the gap nodes are located at (±π/2,±π/2); see figure 1.

c. Let us define new momenta k1 = (kx + ky)/
√

2 − π and k2 = (kx − ky)/
√

2. [These

are momenta defined relative to the (π/2, π/2) nodal point and rotated by 450.] We now

expand εk and ∆k to leading order near the node,

εk ' k · ∇kεk|(π/2,π/2) =
√

2tk1,
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FIG. 1: The energy dispersion εk in the Brillouin zone with the diamond shape Fermi surface at

half filling denoted by a thick line. The nodal directions (diagonal red lines) intersect the Fermi

surface at four points (±π/2,±π/2).

∆k ' k · ∇k∆k|(π/2,π/2) =
√

2∆k2.

The velocities are therefore h̄vF =
√

2ta and h̄v∆ =
√

2∆a (where we have added the

constants a and h̄ that were implicitly set to 1).

d. The density of states is given by:

ρ(ε) =
2

V

∑
k

δ(Ek − ε) ≈ 2

∫
d2k

(2π)2
δ(
√

(vFk1)2 + (v∆k2)2 − ε) =

2

vFv∆

∫
d(vFk1)d(v∆k2)

(2π)2
δ(
√

(vFk1)2 + (v∆k2)2−ε) =
2

(2π)2vFv∆

∫
2πQdQδ(Q−ε) =

ε

πvFv∆

,

where we have introduced scaled coordinates Q1 = vFk1 and Q2 = v∆k2.

Using the above density of states we can calculate the low-temperature specific heat

cv =
∂U

∂T
=

1

kBT 2

∂U

∂β
=

1

kBT 2

∂

∂β

∫ ∞
0

dεεg(ε)
1

eβε + 1

=
1

kBT 2

1

πvFv∆

∫ ∞
0

dεε2
εeβε

(eβε + 1)2
=

1

β4

1

kBT 2

1

πvFv∆

∫ ∞
0

dxx3 ex

(ex + 1)2
.

This gives cv ∝ T 2. The result is valid when kBT � ∆; for temperatures approaching Tc

one must include the T -dependence of the gap function ∆ into account when calculating the

specific heat.


