Physics 502 - Problem Set \#6

(Dated: December 6, 2023)

1. Size of the Cooper pair

We calculate ρ^{2}, the expectation value of r^{2} with the Cooper pair wave function $\Psi=$ $\sum_{\mathbf{k}} g_{\mathbf{k}} e^{i \mathbf{k r}}$. The denominator reads

$$
\int d^{3} r|\Psi(\mathbf{r})|^{2}=\int d^{3} r \sum_{\mathbf{k}, \mathbf{k}^{\prime}} g_{\mathbf{k}} g_{\mathbf{k}^{\prime}}^{*} e^{i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \mathbf{r}}=\sum_{\mathbf{k}, \mathbf{k}^{\prime}} g_{\mathbf{k}} g_{\mathbf{k}^{\prime}}^{*} \delta_{\mathbf{k}, \mathbf{k}^{\prime}}=\sum_{\mathbf{k}}\left|g_{\mathbf{k}}\right|^{2}
$$

The numerator is similar with an extra factor of r^{2}

$$
\begin{gathered}
\int d^{3} r r^{2}|\Psi(\mathbf{r})|^{2}=\int d^{3} r r^{2} \sum_{\mathbf{k}, \mathbf{k}^{\prime}} g_{\mathbf{k}} g_{\mathbf{k}^{\prime}}^{*} e^{i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{r}}=\frac{1}{i} \frac{1}{-i} \int d^{3} r \sum_{\mathbf{k}, \mathbf{k}^{\prime}} g_{\mathbf{k}} g_{\mathbf{k}^{\prime}}^{*} \nabla_{\mathbf{k}} \nabla_{\mathbf{k}^{\prime}} e^{i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{r}} \\
=\int d^{3} r \sum_{\mathbf{k}, \mathbf{k}^{\prime}}\left(\nabla_{\mathbf{k}} g_{\mathbf{k}}\right)\left(\nabla_{\mathbf{k}^{\prime}} g_{\mathbf{k}^{\prime}}^{*}\right) e^{i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{r}}=\sum_{\mathbf{k}, \mathbf{k}^{\prime}}\left(\nabla_{\mathbf{k}} g_{\mathbf{k}}\right)\left(\nabla_{\mathbf{k}^{\prime}} g_{\mathbf{k}^{\prime}}^{*}\right) \delta_{\mathbf{k}, \mathbf{k}^{\prime}}=\sum_{\mathbf{k}}\left|\nabla_{\mathbf{k}} g_{\mathbf{k}}\right|^{2} .
\end{gathered}
$$

In the last line we integrated by parts and neglected the surface term. To proceed from here one can convert the momentum sums to energy integrals. The denominator gives

$$
\sum_{\mathbf{k}}\left|g_{\mathbf{k}}\right|^{2} \approx \int d \epsilon g^{2}(\epsilon)=\int_{2 \epsilon_{F}}^{2 \epsilon_{F}+\hbar \omega_{D}} d \epsilon \frac{1}{\left(\epsilon+\Delta-2 \epsilon_{F}\right)^{2}}=\left(\frac{1}{\Delta}-\frac{1}{\Delta+\hbar \omega_{D}}\right)
$$

In order to calculate the numerator we apply the same method and approximate the gradients as follows

$$
\nabla_{\mathbf{k}}=\nabla_{\mathbf{k}} \epsilon_{\mathbf{k}} \frac{d}{d \epsilon} \approx \hbar v_{F} \frac{d}{d \epsilon}
$$

We therefore have:

$$
\begin{gathered}
\sum_{\mathbf{k}}\left|\nabla_{\mathbf{k}} g_{\mathbf{k}}\right|^{2}=\hbar^{2} v_{F}^{2} \int_{2 \epsilon_{F}}^{2 \epsilon_{F}+\hbar \omega_{D}} d \epsilon\left|\frac{d}{d \epsilon}\left(\frac{1}{\epsilon+\Delta-2 \epsilon_{F}}\right)\right|^{2}= \\
\hbar^{2} v_{F}^{2} \int_{2 \epsilon_{F}}^{2 \epsilon_{F}+\hbar \omega_{D}} d \epsilon \frac{1}{\left(\epsilon+\Delta-2 \epsilon_{F}\right)^{4}}=\frac{1}{3} \hbar^{2} v_{F}^{2}\left(\frac{1}{\Delta^{3}}-\frac{1}{\left(\Delta+\hbar \omega_{D}\right)^{3}}\right) .
\end{gathered}
$$

Putting everything together and neglecting Δ with respect to $\hbar \omega_{D}$ we find:

$$
\rho \approx \frac{\hbar v_{F}}{\sqrt{3} \Delta} .
$$

Plugging in numerical values for typical elemental superconductors $\left(v_{F} \simeq 10^{6} \mathrm{~m} / \mathrm{s}\right.$ and $\Delta \simeq$ 1 meV) we get $\rho \approx 4 \times 10^{3} \AA$.
2. d-wave superconductivity in high T_{c} cuprates
a. In order to diagonalize the Hamiltonian we first Fourier transform. This gives:

$$
H=\sum_{\mathbf{k}, \sigma}\left[-2 t\left(\cos k_{x}+\cos k_{y}\right)-\mu\right] c_{\mathbf{k}, \sigma}^{\dagger} c_{\mathbf{k}, \sigma}+\Delta \sum_{\mathbf{k}}\left(\cos k_{x}-\cos k_{y}\right)\left[c_{\mathbf{k}, \uparrow} c_{-\mathbf{k}, \downarrow}+\text { h.c. }\right] .
$$

The gap function is now proportional to $\left(\cos k_{x}-\cos k_{y}\right)$, a function that changes sign upon $\pi / 2$ rotation $\left(k_{x} \rightarrow k_{y}\right.$ and $\left.k_{y} \rightarrow-k_{x}\right)$. Had we defined the pairing with a positive sign on each bond, the Fourier transformed function would be proportional to $\left(\cos k_{x}+\cos k_{y}\right)$. This function has the full symmetry of the lattice and is known as s-wave.
To find the spectrum we need to diagonalize the Hamiltonian via the Bogoliubov-Vallatin transformation. This can be done easily if we introduce a Nambu spinor

$$
\Psi_{\mathbf{k}}=\binom{c_{\mathbf{k}}}{c_{-\mathbf{k}}^{\dagger}} .
$$

With this definition the Hamiltonian can be written as $H=\sum_{\mathbf{k}} \Psi_{\mathbf{k}}^{\dagger} h_{\mathbf{k}} \Psi_{\mathbf{k}}$ and the matrix $h_{\mathbf{k}}$ is given by

$$
h_{\mathbf{k}}=\left(\begin{array}{cc}
\epsilon_{\mathbf{k}}-\mu & \Delta_{\mathbf{k}} \\
\Delta_{\mathbf{k}} & -\epsilon_{\mathbf{k}}+\mu
\end{array}\right)
$$

The spectrum is given by the eigenvalues of the matrix $\pm E_{\mathbf{k}}$ with $E_{\mathbf{k}}=\sqrt{\left(\epsilon_{\mathbf{k}}-\mu\right)^{2}+\Delta_{\mathbf{k}}^{2}}$.
b. The gap function vanshies along two lines,

$$
\Delta_{\mathbf{k}}=0 \quad \Rightarrow \quad \cos k_{x}=\cos k_{y} \quad \Rightarrow \quad k_{x}= \pm k_{y}
$$

The lines intersect the underlying Fermi surface at four points. To find them we require $\epsilon_{\mathbf{k}}=0$ as well as the condition above

$$
\begin{gathered}
\cos k_{x}+\cos k_{y}=-\frac{\mu}{2 t} \\
2 \cos k_{x}=-\frac{\mu}{2 t} \Rightarrow k_{x}=\operatorname{ArcCos}\left(-\frac{\mu}{4 t}\right)= \pm k_{y}
\end{gathered}
$$

At half filling $\mu=0$ and the gap nodes are located at $(\pm \pi / 2, \pm \pi / 2)$; see figure 1 .
c. Let us define new momenta $k_{1}=\left(k_{x}+k_{y}\right) / \sqrt{2}-\pi$ and $k_{2}=\left(k_{x}-k_{y}\right) / \sqrt{2}$. [These are momenta defined relative to the $(\pi / 2, \pi / 2)$ nodal point and rotated by 45°.] We now expand $\epsilon_{\mathbf{k}}$ and $\Delta_{\mathbf{k}}$ to leading order near the node,

$$
\left.\epsilon_{\mathbf{k}} \simeq \mathbf{k} \cdot \nabla_{\mathbf{k}} \epsilon_{\mathbf{k}}\right|_{(\pi / 2, \pi / 2)}=\sqrt{2} t k_{1}
$$

FIG. 1: The energy dispersion $\epsilon_{\mathbf{k}}$ in the Brillouin zone with the diamond shape Fermi surface at half filling denoted by a thick line. The nodal directions (diagonal red lines) intersect the Fermi surface at four points $(\pm \pi / 2, \pm \pi / 2)$.

$$
\left.\Delta_{\mathbf{k}} \simeq \mathbf{k} \cdot \nabla_{\mathbf{k}} \Delta_{\mathbf{k}}\right|_{(\pi / 2, \pi / 2)}=\sqrt{2} \Delta k_{2}
$$

The velocities are therefore $\hbar v_{F}=\sqrt{2} t a$ and $\hbar v_{\Delta}=\sqrt{2} \Delta a$ (where we have added the constants a and \hbar that were implicitly set to 1).
d. The density of states is given by:

$$
\begin{gathered}
\rho(\epsilon)=\frac{2}{V} \sum_{\mathbf{k}} \delta\left(E_{\mathbf{k}}-\epsilon\right) \approx 2 \int \frac{d^{2} k}{(2 \pi)^{2}} \delta\left(\sqrt{\left(v_{F} k_{1}\right)^{2}+\left(v_{\Delta} k_{2}\right)^{2}}-\epsilon\right)= \\
\frac{2}{v_{F} v_{\Delta}} \int \frac{d\left(v_{F} k_{1}\right) d\left(v_{\Delta} k_{2}\right)}{(2 \pi)^{2}} \delta\left(\sqrt{\left(v_{F} k_{1}\right)^{2}+\left(v_{\Delta} k_{2}\right)^{2}}-\epsilon\right)=\frac{2}{(2 \pi)^{2} v_{F} v_{\Delta}} \int 2 \pi Q d Q \delta(Q-\epsilon)=\frac{\epsilon}{\pi v_{F} v_{\Delta}}
\end{gathered}
$$ where we have introduced scaled coordinates $Q_{1}=v_{F} k_{1}$ and $Q_{2}=v_{\Delta} k_{2}$.

Using the above density of states we can calculate the low-temperature specific heat

$$
\begin{gathered}
c_{v}=\frac{\partial U}{\partial T}=\frac{1}{k_{B} T^{2}} \frac{\partial U}{\partial \beta}=\frac{1}{k_{B} T^{2}} \frac{\partial}{\partial \beta} \int_{0}^{\infty} d \epsilon \epsilon g(\epsilon) \frac{1}{e^{\beta \epsilon}+1} \\
=\frac{1}{k_{B} T^{2}} \frac{1}{\pi v_{F} v_{\Delta}} \int_{0}^{\infty} d \epsilon \epsilon^{2} \frac{\epsilon e^{\beta \epsilon}}{\left(e^{\beta \epsilon}+1\right)^{2}}=\frac{1}{\beta^{4}} \frac{1}{k_{B} T^{2}} \frac{1}{\pi v_{F} v_{\Delta}} \int_{0}^{\infty} d x x^{3} \frac{e^{x}}{\left(e^{x}+1\right)^{2}} .
\end{gathered}
$$

This gives $c_{v} \propto T^{2}$. The result is valid when $k_{B} T \ll \Delta$; for temperatures approaching T_{c} one must include the T-dependence of the gap function Δ into account when calculating the specific heat.

