
Physics 502 - Solutions for assignment 5

(Dated: December 6, 2023)

1. Thermally activated conductivity in a band insulator

a. The density of states can be calculated in the usual way for each band. For positive energies:

g(ε) = 2

∫
d2k

(2π)2
δ(ε−∆− h̄2k2

2m
) =

1

2π

∫
d(k2)δ(ε−∆− h̄2k2

2m
) =

m

h̄2π
Θ(ε−∆).

The delta function can only be satisfied if ε −∆ > 0 and hence the theta function. For negative

energies we get the same coefficient with Θ(−ε−∆) so altogether we have

g(ε) =
m

h̄2π
[Θ(ε−∆) + Θ(−ε−∆)].

The occupation number at T = 0 and finite T is illustrated in the figure on the next page.

To show that the chemical potential is pinned at ε = 0 note that at T = 0, at half filling the lower

band is completely full and the upper band is completely empty. If the number of electrons is to

stay fixed even at T 6= 0, the number of holes in the valence band should be equal to the number

of electrons in the conduction band. Therefore:∫ ∞
0

g(ε)f(ε)dε =

∫ 0

−∞
g(ε)(1− f(ε))dε

where f(ε) is the Fermi-Dirac distribution of electrons and 1 − f(ε) is the distribution of holes.

Canceling the constant density of states from both sides we get:∫ −∆

−∞

1

1 + eβ(ε−µ)
dε =

∫ ∞
∆

[1− 1

1 + eβ(ε−µ)
]dε.

The right hand side can be manipulated as follows∫ ∞
∆

[1− 1

1 + eβ(ε−µ)
]dε =

∫ ∞
∆

1

1 + e−β(ε−µ)
dε =

∫ −∆

−∞

1

1 + eβ(ε+µ)
dε

where at the last step we have taken ε→ −ε. The equation can be satisfied only if

1

1 + eβ(ε−µ)
=

1

1 + eβ(ε+µ)
⇒ −µ = µ ⇒ µ = 0

b. The specific heat is defined as:

cv =
d

dT

∫
εg(ε)f(ε)dε =

∫
εg(ε)

(
∂f(ε)

∂T

)
dε
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FIG. 1: At T = 0 the Fermi-Dirac distribution (dashed line, scaled by the coefficient of g(ε)) is 1 for the

valence band and 0 for the conduction band. At T > 0, some states in the top of the valence band are

unoccupied and some states at the bottom of the conduction band are occupied.

∂f(ε)

∂T
=

ε

kBT 2

eβε

(1 + eβε)2
=

ε

kBT 2

1

(e−
βε
2 (1 + eβε))2

=
ε

kBT 2

1

(2 cosh(βε2 ))2
.

Inserting this into the specific heat we get

cv =
mkB

2πh̄2

∫ ∞
∆

(βε)2

cosh2(βε2 )
dε

where the factor of 2 was added to include the two bands. This gives C1 = mkB/2πh̄
2.

c. We can analyze the above integral in two limiting cases.

- At very low temperature β∆ � 1 and therefore in all of the integration region βε � 1 and

cosh(βε2 ) ≈ 1
2e

βε
2 . In that case

cv '
2mkB

πh̄2

∫ ∞
∆

(βε)2e−βεdε ∝ e−β∆

β
((β∆)2 + 2β∆ + 2) ≈ e−β∆∆2β.

Here the specific heat is exponentially activated due to the Boltzman like distribution of the

electrons. This happens since ∆ is much larger than the width of the Fermi-Dirac distribution and

effectively we see only the exponential tail.

- At high temperature, β∆� 1.

cv =
mkB

2πh̄2

∫ ∞
∆

(βε)2

cosh2(βε2 )
dε =

mkB

2πh̄2

1

β

(∫ ∞
0

x2

cosh2(x2 )
dx−

∫ β∆

0

x2

cosh2(x2 )
dx

)
.

The first term gives contribution to cv proportional to T and is what we would obtain in a 2D

electron gas. In the second term we can replace the cosh by unity and the evaluation gives a term

∼ ∆(β∆)2, negligible compared to the first term in the limit under consideration.

d. Within the relaxation time approximation the conductivity takes the form:

σµν = e2
∫

d2k

(2π)2
τvµvν

(
−df(ε)

dε

)
= e2

∫
d2k

(2π)2
τ
h̄kµ
m

h̄kν
m

βeβε

(1 + eβε)2
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For µ 6= ν the integral vanishes so we can take kµkν → δµν
k2

2 . We can then replace k2 by ε−∆ for

positive energies and −ε−∆ for negative energies (this just produces a factor of 2),

σµν = δµνe
2τ
h̄2

2m

∫
d2k

(2π)2

β(ε−∆)

cosh2(βε2 )
= δµν

e2τ

2h̄2π

∫ ∞
∆

β(ε−∆)

cosh2(βε2 )
dε.

The constant C2 is e2τ/2h̄2π.

In the same way as before we can find the leading behaviour of the integral. For β∆ � 1 the

activation is exponential:

σµν → δµν
4C2

β
e−β∆ ∝ Te−β∆

and for β∆� 1 we recover the metallic behaviour:

σµν → δµν
C2

β

∫ ∞
0

x

cosh2(x2 )
∝ T.

e. The thermal conductivity can be evaluated in a similar way (neglecting the thermo-electric

effects):

κµν =
τ

T

∫
d2k

(2π)2
(ε(k))2vµvν

(
−df(ε)

dε

)
=
C2

e2T
δµν

∫ ∞
∆

βε2(ε−∆)

cosh2(βε2 )
dε

For β∆� 1 we have

κµν →
4C2

e2T
δµν

∫ ∞
∆

βε2(ε−∆)e−βεdε ≈ 4kBC2

e2
∆2e−β∆ ∝ e−β∆

And for β∆� 1

κµν →
C2δµν
e2

T 2
∫ ∞

0

x3dx

cosh2(x2 )
∝ T 2

Parts (d) & (e) imply that the Wiedeman-Franz law is obeyed for high temperatures (β∆ � 1)

where the system behaves essentially like a metal, but is violated for the low temperatures where the

band-gap is relevant and insulating behavior prevails. Note that the general derivation of the WF

law given in the class was done for a metal so there is no reason to expect it to hold for an insulator.

2. e-ph interaction in 1D

Let us use the perturbation theory for e-ph interaction described in the text. We assume that the

electronic energy changes significantly with k → k + q (where k is the electron momentum and q

is the phonon momentum) relative to the phonon energy (i.e, |εk − εk+q| � h̄ωq). This gives

h̄ωnewq = h̄ω(0)
q − 2M2

∑
k

nk(1− nk+q)

εk+q − εk
,
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with h̄ω
(0)
q = W sin(qa/2). Going to a continuum limit and denoting the correction term δωq, we

find at q = π/a

δωπ/a = −2M2L

∫ kF

−kF

dk

2π

1

2A+ 2B cos 2ka
.

We assumed inter-band excitation since the numerator vanishes if both εk and εk+q are from the

same band. This integral can be evaluated with (kF = π/2a at half filling), giving δωπ/a =

− M2L
2a
√
A2−B2

. Using M2 = G/N and L = Na we get G = 2W
√
A2 −B2 as the condition for

vanishing phonon frequency at π/a.


