Physics 502 - Solutions for assignment 5
(Dated: December 6, 2023)

1. Thermally activated conductivity in a band insulator

a. The density of states can be calculated in the usual way for each band. For positive energies:
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The delta function can only be satisfied if € — A > 0 and hence the theta function. For negative

energies we get the same coefficient with ©(—e — A) so altogether we have
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The occupation number at 7' = 0 and finite T is illustrated in the figure on the next page.

To show that the chemical potential is pinned at € = 0 note that at T" = 0, at half filling the lower
band is completely full and the upper band is completely empty. If the number of electrons is to
stay fixed even at T' # 0, the number of holes in the valence band should be equal to the number
of electrons in the conduction band. Therefore:
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where f(e€) is the Fermi-Dirac distribution of electrons and 1 — f(e) is the distribution of holes.

Canceling the constant density of states from both sides we get:
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The right hand side can be manipulated as follows

TR SR GRS SRR N SR
/A 1~ 1+eﬁ(67u)] 6_/A 1 4 e—Ble—n) 6_/_oo 1 + eBletn) €

where at the last step we have taken ¢ — —e. The equation can be satisfied only if
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b. The specific heat is defined as:
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FIG. 1: At T = 0 the Fermi-Dirac distribution (dashed line, scaled by the coefficient of g(¢)) is 1 for the
valence band and 0 for the conduction band. At 7" > 0, some states in the top of the valence band are

unoccupied and some states at the bottom of the conduction band are occupied.
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Inserting this into the specific heat we get
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where the factor of 2 was added to include the two bands. This gives C; = mkp/ 2mh2.
c. We can analyze the above integral in two limiting cases.
- At very low temperature SA > 1 and therefore in all of the integration region Se > 1 and

cosh(%) ~ 1e. In that case
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Here the specific heat is exponentially activated due to the Boltzman like distribution of the
electrons. This happens since A is much larger than the width of the Fermi-Dirac distribution and
effectively we see only the exponential tail.

- At high temperature, SA < 1.
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The first term gives contribution to ¢, proportional to 7" and is what we would obtain in a 2D

electron gas. In the second term we can replace the cosh by unity and the evaluation gives a term
~ A(BA)?, negligible compared to the first term in the limit under consideration.

d. Within the relaxation time approximation the conductivity takes the form:

S 62/ A2k o (_df(e)) 262/ d2k T%hk‘,j BePe
a (2m)2 " de 2m)2° m m (1 + ePe)?




For p1 # v the integral vanishes so we can take k,k, — 5,“, 5. We can then replace k% by € — A for
positive energies and —e — A for negative energies (this just produces a factor of 2),
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The constant Cy is 27 /2h%.
In the same way as before we can find the leading behaviour of the integral. For SA > 1 the

activation is exponential:
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and for SA < 1 we recover the metallic behaviour:
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e. The thermal conductivity can be evaluated in a similar way (neglecting the thermo-electric

effects):
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For SA > 1 we have
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And for A <« 1
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Parts (d) & (e) imply that the Wiedeman-Franz law is obeyed for high temperatures (BA < 1)
where the system behaves essentially like a metal, but is violated for the low temperatures where the
band-gap is relevant and insulating behavior prevails. Note that the general derivation of the WF

law given in the class was done for a metal so there is no reason to expect it to hold for an insulator.

2. e-ph interaction in 1D

Let us use the perturbation theory for e-ph interaction described in the text. We assume that the
electronic energy changes significantly with & — k + ¢ (where k is the electron momentum and ¢
is the phonon momentum) relative to the phonon energy (i.e, |ex — €x14| > hwy). This gives
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with hwéo) = Wsin(ga/2). Going to a continuum limit and denoting the correction term dwg,, we

find at ¢ = 7/a
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We assumed inter-band excitation since the numerator vanishes if both €, and €;4, are from the
same band. This integral can be evaluated with (kp = 7/2a at half filling), giving dw,/, =
—W%. Using M? = G/N and L = Na we get G = 2W+/A2Z — B2 as the condition for
vanishing phonon frequency at 7 /a.



