
P503 Homework 3 Solutions

October 30, 2023

AF Magnons in 2D

(a) Show that while the ferromagnetic state is an exact eigenstate of the Heisenberg
Hamiltonian, this is not true for the antiferromagnetic state.

Let us assume that we have a lattice with a local moment of spin S at each site. The magnetic
properties of this lattice are given by the Heisenberg model as follows:

H = Hexchange +Hon-site = −J
∑
〈i,j〉

Si · Sj − h
∑
i

Szi , (1)

where J is the exchange interaction, h is the on-site magnetization in the z direction,
∑
〈i,j〉 denotes

the summation over nearest neighbors on the lattice. The exchange Hamiltonian can be rewritten as:

Hexchange = −J
∑
〈i,j〉

Si · Sj

= Ŝzi Ŝ
z
j +

1

2

[
Ŝ+
i Ŝ
−
j + Ŝ−i Ŝ

+
j

]
. (2)

Here, Ŝ±i = Ŝxi ± Ŝ
y
i are spin raising (Ŝ+) and lowering operators (Ŝ−) at site i. They act on an

eigenstate |S,m〉 as
Ŝ±|S,m〉 =

√
(S ∓m)(S ±m+ 1)|S,m± 1〉 (3)

for any m = −S,−S + 1, ..., S − 1, S. Note that any spin configuration will be an eigenstate of the
onsite Hamiltonian (since Szi |S,m〉i = m|S,m〉i). Hence, we consider only Hexchange in the following
analysis.
Ferromagnetic order

In a classical ferromagnet, all spins align parallel to one another to minimize energy. Further, if
h > 0 in Hon-site, then the all spins in the |GS〉 will be aligned in the z−direction. We can then guess
the ground state to be |GS〉 = |+ S,+S,+S, ...+ S〉. When acting on a pair of spins |+ S,+S〉, the
first term in Eq. (2) gives S2 as the eigenvalue and the second one vanishes, because no spin can be
further raised. Hence, we obtain,

Hexchange|GS〉 = −Nz
2
JS2|GS〉, (4)

where N is the number of sites and z is the coordination number.
Antiferromagnetic order

In a classical antiferromagnet, J → −J , so the spins now favor an antiparallel alignment. One
guess for the ground state would be |GS〉AFM = | + S,−S,+S,−S, ...〉. We can think of the lattice
comprising two sublattices, A and B, with spins polarized “upwards” in sublattice A and “downwards”
in sublattice B. Applying the operators Ŝ+

i Ŝ
−
j + Ŝ−i Ŝ

+
j , from Hexchange, we notice that a term such

as |...,+S,−S, ...〉 will take the form |...S − 1,−S + 1, ...〉. Particularly for spin-1
2 systems, this means

that any pair of spins can be flipped such that the one that was spin-up originally is now spin-down
and vice versa. Therefore, |GS〉AFM = | + S,−S,+S,−S, ...〉 is not an eigenstate. Due to this, we
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conclude that the classical AF state is at best an approximate ground state of the quantum Heisenberg
Hamiltonian with J < 0. [N.B.: In one spatial dimension the exact ground state can be found using
the so called Bethe-ansatz technique, but this is quite involved. In d > 1 the exact ground state is
not known.]

(b) Following the discussion on p. 61-62 of Kittel handout work out the zero-point sublat-
tice magnetization for an antiferromagnet on a 2D square lattice. Assume zero applied
field and ignore magnon interaction terms. Hint: To get the final numerical answer
you must evaluate the k-space integral numerically using Maple, Mathematica, Wolfram
Alpha, MatLab or a similar package. Alternately, you can use the long-wavelength ap-
proximation for ωk and evaluate the integral analytically using the Debye-type approach
(but this leads to a less accurate result).

Following the steps on p. 61-62 of Kittel, the zero-point sublattice magnetization for an antiferromag-
net is given by

∆Sz =
1

2

∑
k

[
(1− γ2

k)−1/2 − 1
]
. (5)

For a two-dimensional square lattice,

γk =
1

4

(
eikxa + e−ikxa + eikya + e−ikya

)
=

1

2
(cos(kxa) + cos(kya)) .

Setting a = 1, for an N spin system, we get

∆Sz = −1

2
N +

N

2(2π)2

∫ π

−π

∫ π

−π
dkxdky(1− γ2

k)−1/2. (6)

Solving this using Mathematica, we get the zero-point sublattice magnetization as ∆Sz = 0.1966N .

(c) Now discuss the temperature dependence of sublattice magnetization in the same
setup. What does your result imply for the stability of AF order in low-dimensional
solids?

For a 2D square lattice, we derive the temperature dependence of the sublattice magnetization using

〈Sz(0)〉 − 〈Sz(T )〉 =
∑
k

〈nk〉(1− γ2
k)−1/2 (7)

=
Ω

(2π)2

∫ kmax

0
2πkdk〈nk〉(1− γ2

k)−1/2 (8)

where

〈nk〉 =
1

exp
(

ωk
kBT

)
− 1

.

Following Kittel, this can be simplified using ωk ≈ kBΘNk/kmax which modifies 〈nk〉 as

〈nk〉 =
1

exp
(

ΘN
T . k

kmax

)
− 1

.

If n is the number of atoms on one sublattice per unit volume, then kmax obeys the following
relation

n =
1

(2π)2
πk2

max.
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Assuming ka� 1, we may also simplify (1− γ2
k)−1/2 as follows

(1− γ2
k)−1/2 =

(
1− 1

4
(cos(kx) + cos(ky))

2

)−1/2

≈
(

1− 1

4
(2− k2/2)2

)−1/2

≈
√

2

k
. (9)

Using these approximations, we obtain,

〈Sz(0)〉 − 〈Sz(T )〉 ∝
∫ kmax

0
dkk

1

exp
(

ΘN
T . k

kmax

)
− 1

1

k
. (10)

This integral is of the type
∫ xmax

0
1

ex−1 which is divergent when x approaches the lower bound. This
implies that antiferromagnetic order in 2D becomes unstable at any non-zero temperature. A similar
analysis shows that 1D antiferromagnetic order becomes unstable even at T = 0 and thus, stricly
speaking, there are no 1D antiferromagnets.
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