Physics 502-Solutions for assignment 2

(Dated: October 23, 2023)

1. Ground state of weakly interacting bosons
a. First, we calculate the commutator of the α_{k} operators by writing each in terms of a_{k} and a_{k}^{\dagger} and using the canonical commutation relations $\left[a_{k}, a_{k}^{\prime}\right]=\left[a_{k}^{\dagger}, a_{k^{\prime}}^{\dagger}\right]=0$ and $\left[a_{k}, a_{k^{\prime}}^{\dagger}\right]=\delta_{k k^{\prime}}$. We immediately get $\left[\alpha_{k}, \alpha_{k^{\prime}}\right]=\left[\alpha_{k}^{\dagger}, \alpha_{k^{\prime}}^{\dagger}\right]=0$ as must be true for Bosonic particles. Next, we demand

$$
\begin{aligned}
{\left[\alpha_{k}, \alpha_{k^{\prime}}^{\dagger}\right] } & =\delta_{k k^{\prime}} \\
\left(u_{k}^{2}-v_{k}^{2}\right) \delta_{k k^{\prime}} & =\delta_{k k^{\prime}}
\end{aligned}
$$

so that $u_{k}^{2}-v_{k}^{2}=1$.
The definition of a symplectic matrix U_{k} is

$$
U_{k}^{T}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) U_{k}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

By subbing in the given matrix U_{k} for the definition of the α_{k} operators, one can easily confirm that U_{k} is symplectic given that $u_{k}^{2}-v_{k}^{2}=1$.

Similarly, it can easily be shown that $U_{k}^{\dagger} U_{k} \neq \mathbb{I}$ and, hence, U_{k} is not unitary.
b. Using $a_{k}=u_{k} \alpha_{k}+v_{k} \alpha_{-k}^{\dagger}$ and $a_{k}^{\dagger}=u_{k} \alpha_{k}^{\dagger}+v_{k} \alpha_{-k}$ and substituting into the Hamiltonian $H=\frac{1}{2} N^{2} V_{0}+\sum_{k}^{\prime}\left(\hbar \Omega_{k} a_{k}^{\dagger} a_{k}+\frac{1}{2} \eta_{k}\left(a_{k} a_{-k}+a_{k}^{\dagger} a_{-k}^{\dagger}\right)\right)$, we find that in order for terms such as $\alpha_{k} \alpha_{-k}$ and $\alpha_{k}^{\dagger} \alpha_{-k}^{\dagger}$ to cancel we must set $2 \Omega_{k} u_{k} v_{k}+\eta_{k}\left(u_{k}^{2}+v_{k}^{2}\right)=0$ or equivalently

$$
\tanh 2 \theta_{k}=-\frac{\eta_{k}}{\Omega_{k}}=-\frac{N_{0} V_{k}}{\epsilon_{k}+N_{0} V_{k}}
$$

using that $2 \sinh \theta \cosh \theta=\sinh 2 \theta$ and $\sinh ^{2} \theta+\cosh ^{2} \theta=\cosh 2 \theta$.
c. α_{k} is the annihilation operator for quasi-particle excitations, hence, in the ground state where no such quasi-particles should be excited, $\alpha_{k}\left|\Phi_{0}\right\rangle=0$. Substituting for a_{k} and a_{k}^{\dagger},

$$
\begin{gathered}
\left\langle n_{k}\right\rangle_{0}=\left\langle\Phi_{0}\right|\left(u_{k} \alpha_{k}^{\dagger}+v_{k} \alpha_{-k}\right)\left(u_{k} \alpha_{k}+v_{k} \alpha_{-k}^{\dagger}\right)\left|\Phi_{0}\right\rangle \\
=\left\langle\Phi_{0}\right| v_{k}^{2} \alpha_{-k} \alpha_{-k}^{\dagger}\left|\Phi_{0}\right\rangle
\end{gathered}
$$

using $\alpha_{k}\left|\Phi_{0}\right\rangle=0$ and $\left\langle\Phi_{0}\right| \alpha_{k}^{\dagger} \alpha_{-k}^{\dagger}\left|\Phi_{0}\right\rangle=0$. Finally, noting that $\alpha_{-k} \alpha_{-k}^{\dagger}=1+\alpha_{-k}^{\dagger} \alpha_{-k}$ we find

$$
\left\langle n_{k}\right\rangle_{0}=\left\langle\Phi_{0}\right| v_{k}^{2}\left|\Phi_{0}\right\rangle=v_{k}^{2}
$$

Solving for v_{k}^{2} in terms of $\tanh 2 \theta$, we have

$$
v_{k}^{2}=\sinh ^{2} \theta_{k}=\frac{1}{2}\left(\cosh 2 \theta_{k}-1\right)=\frac{1}{2}\left(\frac{\Omega_{k}}{\omega_{k}}-1\right)
$$

As $k \rightarrow 0$ we see that v_{k}^{2} diverges. As $k \rightarrow \infty, \frac{\Omega_{k}}{\omega_{k}} \rightarrow 1$ so that $v_{k}^{2} \rightarrow 0$.
d. Assuming the form $\hat{O}=\prod_{k} \exp \left(z_{k} a_{k}^{\dagger} a_{-k}^{\dagger}\right)$ and considering the relation $a_{k}\left|\Phi_{0}\right\rangle=\frac{v_{k}}{u_{k}} a_{-k}^{\dagger}\left|\Phi_{0}\right\rangle$ gives

$$
\begin{equation*}
a_{k} \prod_{k^{\prime}=-\infty}^{\infty} \exp \left(z_{k^{\prime}} a_{k^{\prime}}^{\dagger} a_{-k^{\prime}}^{\dagger}\right)|0\rangle=\frac{v_{k}}{u_{k}} a_{-k}^{\dagger} \prod_{k^{\prime}=-\infty}^{\infty} \exp \left(z_{k^{\prime}} a_{k^{\prime}}^{\dagger} a_{-k^{\prime}}^{\dagger}\right)|0\rangle \tag{1}
\end{equation*}
$$

To compute the left hand side explicitly, we first compute the following commutator

$$
\begin{aligned}
& {\left[a_{k}, \exp \left(z_{k^{\prime}} a_{k^{\prime}}^{\dagger} a_{-k^{\prime}}^{\dagger}\right)\right]} \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} z_{k^{\prime}}^{n}\left[a_{k}, a_{k^{\prime}}^{\dagger}{ }^{n} a_{-k^{\prime}}^{\dagger}{ }^{n}\right] \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} z_{k^{\prime}}^{n}\left\{a_{k^{\prime}}^{\dagger}{ }^{n}\left[a_{k}, a_{-k^{\prime}}^{\dagger}\right]+\left[a_{k}, a_{k^{\prime}}^{\dagger}\right] a_{-k^{\prime}}^{\dagger}\right\} \\
& =\sum_{n=0}^{n} \frac{1}{n!} z_{k^{\prime}}^{n+1}\left(a_{k^{\prime}}^{\dagger}{ }^{n+1} a_{-k^{\prime}}^{\dagger}{ }^{n} \delta_{k,-k^{\prime}}+a_{k^{\prime}}^{\dagger}{ }^{n} a_{-k^{\prime}}^{\dagger}{ }^{n+1} \delta_{k k^{\prime}}\right)
\end{aligned}
$$

where, in the last equality, we have used the commutator in the hint and shifted the summation variable $n \rightarrow n+1$. Pulling out a factor of a_{-k}^{\dagger} we finally obtain

$$
\left[a_{k}, \exp \left(z_{k^{\prime}} a_{k^{\prime}}^{\dagger} a_{-k^{\prime}}^{\dagger}\right)\right]=a_{-k}^{\dagger}\left(\delta_{k,-k^{\prime}} z_{-k}+\delta_{k k^{\prime}} z_{k}\right) \exp \left(z_{k^{\prime}} a_{k^{\prime}}^{\dagger} a_{-k^{\prime}}^{\dagger}\right)
$$

We can now use this to compute the left hand side of eq. (1) by commuting the a_{k} operator through the product of exponentials until it annihilates the vacuum:

$$
\begin{aligned}
& a_{k} \prod_{k^{\prime}=-\infty}^{\infty} \exp \left(z_{k^{\prime}} a_{k^{\prime}}^{\dagger} a_{-k^{\prime}}^{\dagger}\right)|0\rangle \\
& =\prod_{k^{\prime}<-k} \exp \left(z_{k^{\prime}} a_{k^{\prime}}^{\dagger} a_{-k^{\prime}}^{\dagger}\right)\left[a_{-k}^{\dagger} z_{-k} \exp \left(z_{k} a_{k}^{\dagger} a_{-k}^{\dagger}\right)+\exp \left(z_{k} a_{k}^{\dagger} a_{-k}^{\dagger}\right) a_{k}\right] \prod_{k^{\prime}>-k} \exp \left(z_{k^{\prime}} a_{k^{\prime}}^{\dagger} a_{-k^{\prime}}^{\dagger}\right)|0\rangle \\
& =z_{-k} a_{-k}^{\dagger} \prod_{k^{\prime}=-\infty}^{\infty} \exp \left(z_{k^{\prime}} a_{k^{\prime}}^{\dagger} a_{-k^{\prime}}^{\dagger}\right)|0\rangle \\
& \quad+\prod_{k^{\prime}<k} \exp \left(z_{k^{\prime}} a_{k^{\prime}}^{\dagger} a_{-k^{\prime}}^{\dagger}\right)\left[a_{-k}^{\dagger} z_{k} \exp \left(z_{k} a_{k}^{\dagger} a_{-k}^{\dagger}\right)+\exp \left(z_{k} a_{k}^{\dagger} a_{-k}^{\dagger}\right) a_{k}\right] \prod_{k^{\prime}>k} \exp \left(z_{k^{\prime}} a_{k^{\prime}}^{\dagger} a_{-k^{\prime}}^{\dagger}\right)|0\rangle \\
& =\left(z_{-k}+z_{k}\right) a_{-k}^{\dagger} \prod_{k^{\prime}=-\infty}^{\infty} \exp \left(z_{k^{\prime}} a_{k^{\prime}}^{\dagger} a_{-k^{\prime}}^{\dagger}\right)|0\rangle .
\end{aligned}
$$

Comparing this with eq. (1) we conclude that $z_{k}=v_{k} /\left(2 u_{k}\right)$ and, hence, that the ground state is

$$
\begin{equation*}
\left|\Phi_{0}\right\rangle=\prod_{k=-\infty}^{\infty} \exp \left(\frac{1}{2} \tanh \left(\theta_{k}\right) a_{k}^{\dagger} a_{-k}^{\dagger}\right)|0\rangle . \tag{2}
\end{equation*}
$$

2. Liquid ${ }^{4} \mathrm{He}$

Following the hints provided in the question we calculate the temperature dependence of the uncondensed fraction

$$
n^{\prime}(T)=\frac{1}{\Omega} \sum_{k}\left\langle a_{k}^{\dagger} a_{k}\right\rangle .
$$

Using $a_{k}=\cosh \theta_{k} \alpha_{k}+\sinh \theta_{k} \alpha_{-k}^{\dagger}$ and $a_{k}^{\dagger}=\cosh \theta_{k} \alpha_{k}^{\dagger}+\sinh \theta_{k} \alpha_{-k}$, we obtain

$$
a_{k}^{\dagger} a_{k}=\cosh ^{2} \theta_{k} \alpha_{k}^{\dagger} \alpha_{k}+\sinh ^{2} \theta_{k} \alpha_{-k} \alpha_{-k}^{\dagger}+\cosh \theta_{k} \sinh \theta_{k}\left(\alpha_{k}^{\dagger} \alpha_{-k}^{\dagger}+\alpha_{-k} \alpha_{k}\right)
$$

Assuming no temperature dependence of θ_{k} we need to calculate $\left\langle\alpha_{k}^{\dagger} \alpha_{k}\right\rangle,\left\langle\alpha_{-k} \alpha_{-k}^{\dagger}\right\rangle,\left\langle\alpha_{-k} \alpha_{k}\right\rangle$ and $\left\langle\alpha_{k}^{\dagger} \alpha_{-k}^{\dagger}\right\rangle$. The last two terms will vanish in this average since the Hamiltonian is diagonal in the α_{k} 's. From the Bose-Einstein distribution with $\mu=0$ we have

$$
\left\langle\alpha_{k}^{\dagger} \alpha_{k}\right\rangle=\frac{1}{e^{\beta \hbar \omega_{k}}-1}
$$

and

$$
\left\langle\alpha_{-k} \alpha_{-k}^{\dagger}\right\rangle=1+\frac{1}{e^{\beta \hbar \omega_{-k}-1}} .
$$

Summing over the momentum k and replacing $k \rightarrow-k$ in the second term we get

$$
n^{\prime}(T)=\frac{1}{\Omega} \sum_{k}\left[\frac{\cosh ^{2} \theta_{k}+\sinh ^{2} \theta_{k}}{e^{\beta \hbar \omega_{k}}-1}+\sinh ^{2} \theta_{k}\right] .
$$

We can now replace the sum by an integral and linearize the spectrum for small k, taking $\cosh ^{2} \theta_{k}+$ $\sinh ^{2} \theta_{k}=\cosh \left(2 \theta_{k}\right)=\frac{\Omega_{k}}{\omega_{k}}=\frac{\epsilon_{k}+N_{0} V_{k}}{\sqrt{\epsilon_{k}\left(\epsilon_{k}+2 N_{0} V_{k}\right)}}$. For short range interactions this is $\approx \frac{\sqrt{V_{0} N_{0} m}}{\hbar k}$

$$
n^{\prime}(T) \approx \int \frac{k^{2} d k}{2 \pi^{2}} \frac{\sqrt{V_{0} N_{0} m}}{\hbar k} \frac{1}{e^{\beta \hbar c k}-1} .
$$

Scaling the k variable by $\beta \hbar c$ where $c=\sqrt{\frac{V_{0} N_{0}}{m}}$ will give

$$
n^{\prime}(T) \propto T^{2} \int \frac{x d x}{e^{x}-1}
$$

Restoring all the constants we have

$$
n_{0}(T)=n_{0}(0)-\frac{m}{12 \hbar^{3} c}\left(k_{B} T\right)^{2} .
$$

For long range interactions, $\frac{\Omega_{k}}{\omega_{k}} \approx \frac{\sqrt{N_{0} m e^{2}}}{\hbar k^{2}}, \hbar \omega_{k}=\sqrt{\frac{\hbar^{2} k^{2}}{2 m}\left(\frac{\hbar^{2} k^{2}}{2 m}+2 N_{0} V_{k}\right)} \approx \hbar e \sqrt{\frac{N_{0}}{m}}\left(1+\frac{\hbar^{2} k^{4}}{8 m N_{0} e^{2}}\right)$ and

$$
n^{\prime}(T) \approx \int \frac{k^{2} d k}{2 \pi^{2}} \frac{\sqrt{N_{0} m e^{2}}}{\hbar k^{2}} \frac{1}{e^{C+A k^{4}}-1} \approx \frac{\sqrt{N_{0} m e^{2}}}{\hbar 2 \pi^{2}} e^{-C} A^{-\frac{1}{4}} \int_{0}^{\infty} d x e^{-x^{4}}
$$

with $C=\beta \hbar e \sqrt{N_{0} / m}$ and $A=\beta \hbar^{3} /\left(8 m^{\frac{3}{2}} \sqrt{N_{0}} e\right)$ so that in low T limit,

$$
n_{0}(T)-n_{0}(0) \sim T^{1 / 4} \exp \left(-\hbar e \sqrt{N_{0} / m} /\left(k_{B} T\right)\right) .
$$

3. Phonons in a cubic lattice

a. The Hamiltonian can be written as

$$
\mathcal{H}=\sum_{n, i}\left[\frac{p_{l, i}^{2}}{2 m}+\frac{1}{2} K \sum_{\delta}\left(u_{l, i}-u_{l+\delta, i}\right)^{2}\right]=\sum_{n, i}\left[\frac{p_{l, i}^{2}}{2 m}+K \sum_{\delta}\left(u_{l, i}^{2}-u_{l, i} u_{l+\delta, i}\right)\right],
$$

where $l=n a$ goes over the lattice sites and $i=x, y, z$ (direction of displacement, i.e, polarization) and δ is a vector that runs over the nearest neighbours. Note that in lower dimensions $(1,2)$ we still have to take into account motion in all three directions (the direction of the vector q is restricted but it's polarization is in three dimensions). As before we can define the dynamical matrix, which is already diagonal in x, y, z :

$$
V^{i, j}\left(l, l^{\prime}\right)=\left\{\begin{array}{lc}
2 K \delta_{i j} & l=l^{\prime} \\
-K \delta_{i j} & l=l^{\prime} \pm a
\end{array}\right.
$$

This leads to the dispersion

$$
\omega_{q \mu}=\sqrt{\frac{V_{q \mu}}{M}}=2 \sqrt{\frac{K}{M}}\left[\sum_{i=1}^{d} \sin ^{2}\left(a q_{i} / 2\right)\right]^{\frac{1}{2}},
$$

independent of polarization direction. For small $|q|$ this can be approximated by $\omega_{q}=c q$ with $c=\sqrt{\frac{K}{M}} a$
b. The density of states is defined by:

$$
D(\omega)=\frac{1}{V} \sum_{q, \mu} \delta\left(\omega-\omega_{q, \mu}\right)
$$

In the limit of long wavelengths we can approximate this as

$$
\begin{gathered}
D(\omega)=\frac{1}{V} \sum_{q, \mu} \delta(\omega-c q)=3 \int \frac{d^{d} q}{(2 \pi)^{d}} \delta(\omega-c q)=\frac{3}{(2 \pi)^{d}} \Phi(d) \int d q q^{d-1} \delta(\omega-c q) \\
=\frac{3}{(2 \pi)^{d}} \Phi(d) \frac{\omega^{d-1}}{c^{d}}=\frac{3}{2^{d-1} \pi^{d / 2} \Gamma(d / 2)} \frac{\omega^{d-1}}{c^{d}}
\end{gathered}
$$

where the function $\Phi(d)$ is just the angular integral, i.e, the surface of a unit sphere in d dimensions. The specific heat due to phonons is given by

$$
c_{v}=\frac{d\langle E\rangle}{d T}=\frac{d}{d T} \sum_{q, \mu} \hbar \omega_{q, \mu}\left(\left\langle n_{q, \mu}\right\rangle+\frac{1}{2}\right)
$$

$$
=\frac{d}{d T} \sum_{q, \mu} \hbar \omega_{q, \mu} \frac{1}{e^{\beta \hbar \omega_{q, \mu}}-1}=\frac{1}{k_{B} T^{2}} \int d \omega D(\omega) \frac{(\hbar \omega)^{2} e^{\beta \hbar \omega}}{\left(e^{\beta \hbar \omega}-1\right)^{2}}
$$

As usual the temperature dependence can be found by substitution $x=\beta \hbar \omega$ and since $D(\omega) \propto \omega^{d-1}$ this leads to $c_{v} \propto T^{d}$.
c. The Debye model requires $\int_{0}^{\omega_{D}} D(\omega) d \omega=N d$. With a linearized dispersion and the density of states that was found in (a) this gives:

$$
\frac{3 V}{2^{d-1} \pi^{d / 2} \Gamma(d / 2)} \frac{\omega_{D}^{d}}{d c^{d}}=N d, \quad \omega_{D}=2 \sqrt{\pi} \sqrt{\frac{K}{M}}\left(\frac{d^{2} N}{6 V} \Gamma\left(\frac{d}{2}\right)\right)^{1 / d}
$$

d. The average of the displacement is conveniently calculated when written in terms of creation and annihilation operators, $u_{q}^{i}=\sqrt{\frac{\hbar}{2 M \omega_{q}}}\left(a_{-q, \mu}^{\dagger}+a_{q, \mu}\right)$. The square leads to four terms of which only two average to a non-zero value ($\langle a a\rangle$ and $\left\langle a^{\dagger} a^{\dagger}\right\rangle$ average to zero). The non vanishing terms give the occupation number, which is given by the Bose-Einstein distribution function. This yields

$$
\left\langle u^{2}\right\rangle=\frac{\hbar}{2 M N} \sum_{q, \mu} \frac{1}{\omega_{q, \mu}}\left(\frac{2}{e^{\beta \hbar \omega_{q \mu}}-1}+1\right)
$$

Replacing the sum by an integral and writing it in terms of $D(\omega)$ we find

$$
\left\langle u^{2}\right\rangle=\frac{\hbar V}{2 M N} \int_{0}^{\omega_{D}} d \omega \frac{D(\omega)}{\omega}\left(\frac{2}{e^{\beta \hbar \omega}-1}+1\right)
$$

The first term represents thermal fluctuations while the second represents quantum fluctuations (zero-point motion) of the ions. We now substitute the long wavelength form $D(\omega)=A_{d} \omega^{d-1} / c^{d}$ found above and perform the integral. We find

$$
\left\langle u^{2}\right\rangle=\frac{\hbar^{2-d} V}{2 M N c^{d}} A_{d}\left[2 b_{d}\left(k_{B} T\right)^{d-1}+\frac{\left(\hbar \omega_{D}\right)^{d-1}}{d-1}\right]
$$

with

$$
b_{d}=\int_{0}^{\infty} d x \frac{x^{d-2}}{e^{x}-1}
$$

Clearly this last integral is infrared divergent for $d \leq 2$, implying that lattices are unstable in lower dimensions: the melting temperature, which is inversely proportional to the above integral, is zero. In $d=2$ the lattice is stable at $T=0$. In $d=1$ quantum fluctuation destroy the lattice even at $T=0$. These results can be understood as consequences of general theorem due to Mermin and Wagner.

In $d=3$ we can use the Lindemann criterion to determine T_{M},

$$
T_{M}=\left[c_{L}^{2} \frac{4 M \hbar c^{3}}{k_{B}^{2} a}-\frac{3}{2 \pi^{2}} \theta_{D}^{2}\right]^{1 / 2}
$$

with $\theta_{D}=\hbar \omega_{D} / k_{B}$ the Debye temperature.
e) For the Polonium crystal we have $a=3.34 \AA, T_{M}=527 \mathrm{~K}$ and $M=209 \times 1.67 \times 10^{-27} \mathrm{~kg}$. We first estimate c by neglecting θ_{D} in the above equation - we expect that $T_{M} \gg \theta_{D}$. This yields

$$
c \simeq\left[\left(k_{B} T_{M}\right)^{2} \frac{a}{4 M \hbar c_{L}}\right]^{1 / 3} \simeq 1064 \mathrm{~m} / \mathrm{s} .
$$

From c we now deduce the Debye temperature as

$$
\theta_{D}=\frac{\hbar c}{k_{B} a} 2 \sqrt{\pi}(2 \sqrt{\pi} / 3)^{1 / 3} \simeq 51 \mathrm{~K}
$$

which indeed is much smaller than T_{M} and our solution is self-consistent. The values of c and θ_{D} appear to be reasonable as they fall within the expected range for solids.

