Physics 502 - Solutions for assignment 2
(Dated: October 23, 2023)

1. Ground state of weakly interacting bosons

a. First, we calculate the commutator of the o operators by writing each in terms of a; and
az and using the canonical commutation relations [ag, a}] = [a,t, GH =0 and [ak, a};,} = . We

immediately get [og, apr] = [042, a,t,] = 0 as must be true for Bosonic particles. Next, we demand

[akv OZH = Ok

(up — V) Sk = O

so that ui — vz =1.

The definition of a symplectic matrix Uy is

o 0 1 U, — 0 1
-10 -10
By subbing in the given matrix Uy for the definition of the ayj operators, one can easily confirm
that Uy is symplectic given that uz — vz =1.
Similarly, it can easily be shown that U,I Ui # 1 and, hence, Uy is not unitary.
b. Using ar = ugai + vkaT_k and aL = ukaL + vpa_j and substituting into the Hamiltonian
H = %NZVM'ZZ; (thazak + %nk(aka_k + azaik)), we find that in order for terms such as a,a_y
and aLaT_k to cancel we must set 2Q ugv, + nk(u% + v,%) = 0 or equivalently

U NoVj,
tanh 20 = — 2% = 07k
e = O, T et NoVi

using that 2sinh @ cosh # = sinh 20 and sinh? 6 + cosh? § = cosh 26.
c. ay is the annihilation operator for quasi-particle excitations, hence, in the ground state where

no such quasi-particles should be excited, ay|®o) = 0. Substituting for aj and aL,

(Ng)o = @0\(%042 + vpa_g) (upog, + UkOéT,k)"I’@

= (Bolvia_gal o)

T

using ag|®o) = 0 and (@0](1204]:,6@@ = 0. Finally, noting that a_ja', =1+ aika_k we find

(nk)o = (Polvg|Po) = v}



Solving for fu,% in terms of tanh 26, we have

1 Q
v = sinh® f), = i(cosh 20, — 1) = 3 <k _ 1>
Wi

As k — 0 we see that v,% diverges. As k — oo, 2—’: — 1 so that vi — 0.
d. Assuming the form O =[], exp(zkazaf_k) and considering the relation a|®q) = Z—’;aik@@

gives

oo
ar [[ explawalal o) = Eal, H exp(zwaf,al ,)|0). (1)

k'=—o0 Uk k'=—o00

To compute the left hand side explicitly, we first compute the following commutator
{ak, exp (zk/a,t,aik,ﬂ
= i %z,?, {ak, aL,naT_k,,n}
-5 A e el )
— Z —z,:‘,“ (ak,n+1a1k/n5k,fk’ + a;tfnaT_k'nH‘skk’)

where, in the last equality, we have used the commutator in the hint and shifted the summation

variable n — n + 1. Pulling out a factor of aT_  We finally obtain
[aky exp <Zk/CLL/aT_k/>] =al, (Ok,—k'2—k + Ok 21) €XP (Zk'allaik/) .
We can now use this to compute the left hand side of eq. (1) by commuting the a; operator
through the product of exponentials until it annihilates the vacuum:

o
ay, H exp (zk/az,aT_k,) |0)

k'=—oc0

H exp (zk/az/aik/) [aT_kz_k exp <zka;2aT_k) + exp (zka,t:aT_k> ak} H exp (zk/a};,aik,) |0)
k'<—k k'>—k

oo
= z_kaik H exp (zk/a};,aik,) |0)

k'=—o0

+ H exp <zk/a2/aik/) [aT_kzk exp (zkaLaT_k) + exp (zka};aT_k) ak} H exp (zk/a;i,aik,> |0)
k' <k k' >k

o0
= (sz' =+ Zk‘) aT_k H exp (Zk/a‘};:/a-i—_k,/) ’0)

k'=—o0

Comparing this with eq. (1) we conclude that z; = v /(2uy) and, hence, that the ground state is

|®g) = H exp( tanh(ﬁk)aka k) |0). (2)

k=—o00



2. Liquid “He
Following the hints provided in the question we calculate the temperature dependence of the
uncondensed fraction

Z aa)-

k

Using aj = cosh Opay, + sinh GkaT_k and aL = cosh Hkozz + sinh 0}, we obtain

T

aLak — cosh? Hkazak + sinh? Qka,koﬁ_k + cosh 6 sinh Gk(ala_k + a_jap).

Assuming no temperature dependence of 0 we need to calculate (aiak% (oe_kozik% (a_pap) and
<a£o¢T_k>. The last two terms will vanish in this average since the Hamiltonian is diagonal in the

ag’s. From the Bose-Einstein distribution with p = 0 we have

t _ 1
(po) = Bhor — 1
and
Py 1
(a_pa! ) =1+ o 1

Summing over the momentum k and replacing £ — —Fk in the second term we get

+ sinh? 6]

1 cosh? 0}, + sinh? 6},
- 5 Z eﬁhwk —1

We can now replace the sum by an integral and linearize the spectrum for small k, taking cosh? 6, +

sinh? 0, = cosh(26,) = & = NV For short range interactions this is ~ 7W
""’“ er (e +2No Vi)

W(T) ~ / k2dk /VoNg 1
272 hk ePhck _ 1

Scaling the k variable by Bhc where ¢ = /Y200 will give
dx

'(T) o T2 / e

n/(T) o o1

Restoring all the constants we have
m
T) = - T)2.
no(T) = n0(0) = 155 (ksT)

/ 2
For long range interactions, %’; ~ ];iz;m , hwy, = \/h;f (hzkz + 2N0Vk> =~ he \/% (1 =+ %)

and

272 k2 OFART 1 h27r2

2 /N, 2 1 /N, 2
n'(T) %/k dk v/ Nome T o=C a1 / dze""



with C = phey/Ny/m and A = Bﬁ3/(8m%\/Noe) so that in low T limit,

no(T) — no(0) ~ T* exp(—he~r/No/m/(ksT)).

3. Phonons in a cubic lattice

a. The Hamiltonian can be written as

2.
H= ; ]275,,1 + ;Kg(ul,i — ul+6,i)2] = Z

n,t

P}

i 2

+ K E (uj; — wriuigsi) |
5

2m

where | = na goes over the lattice sites and i = x, y, z (direction of displacement, i.e, polarization)
and ¢ is a vector that runs over the nearest neighbours. Note that in lower dimensions (1,2) we still
have to take into account motion in all three directions (the direction of the vector ¢ is restricted
but it’s polarization is in three dimensions). As before we can define the dynamical matrix, which

is already diagonal in z,y, z:

. 2Ko;; 1=

VeI =
_K(;ij = l/ +a

This leads to the dispersion

1
d 2
_ /‘/qﬂ _ / K § s 2 .
w‘l# - M =2 M [i_l S ((qu/2) )

independent of polarization direction. For small |g| this can be approximated by w, = c¢ with

— /K
c=1/370

b. The density of states is defined by:
1
D(w) = v Z (w — wa,p)
Th

In the limit of long wavelengths we can approximate this as

d
D) = 5 X dw—cn) =3 [ i — ) = 5 o50() [ dag' o e

3 wd—l 3 wd—l

(27T)d(I)(d) ¢l T 2d-17d2T(4/2) o4

where the function ®(d) is just the angular integral, i.e, the surface of a unit sphere in d dimensions.

The specific heat due to phonons is given by

dE)  d 1
Co=ar T dﬁzmq,u <<”q,u> + 2>

Q1



d 1 1 (hw)?ePhe
=7 qz;hwq’“eﬁﬁwq,u 1T T /dWD(w)(eﬁfw —

As usual the temperature dependence can be found by substitution 2 = Sfiw and since D(w) oc w?!
this leads to ¢, o T<.
c. The Debye model requires f(‘)” P D(w)dw = Nd. With a linearized dispersion and the density of

states that was found in (a) this gives:

3V wi &N d 1/d
“D _ Ng =2/ —
24=17d/21(d/2) dcd  wp = 2T (

d. The average of the displacement is conveniently calculated when written in terms of creation

and annihilation operators, uz = \/ 3o z\?wq( T,q u Ty ) The square leads to four terms of which
only two average to a non-zero value ({aa) and (aTaT> average to zero). The non vanishing terms

give the occupation number, which is given by the Bose-Einstein distribution function. This yields

h 1 2

2

= 1]).

') 2MNqu# (eﬁh‘”w 1t )
NI

Replacing the sum by an integral and writing it in terms of D(w) we find

RV [“P  D(w) 2
2y
W=y M <eﬁﬁw—1+1)'

The first term represents thermal fluctuations while the second represents quantum fluctuations
(zero-point motion) of the ions. We now substitute the long wavelength form D(w) = Agw?~1/c?

found above and perform the integral. We find

Al
2M Ncd

0 d—2
bd—/ do—.
0 e””—l

Clearly this last integral is infrared divergent for d < 2, implying that lattices are unstable in lower

(u2) = o]

Ay {2bd(szT)d_1 + ( 1

with

dimensions: the melting temperature, which is inversely proportional to the above integral, is zero.
In d = 2 the lattice is stable at T'= 0. In d = 1 quantum fluctuation destroy the lattice even at
T = 0. These results can be understood as consequences of general theorem due to Mermin and
Wagner.

In d = 3 we can use the Lindemann criterion to determine Ty,

LAMES 3,1

Tu =27z, ~am|



with 6p = hwp/kp the Debye temperature.
e) For the Polonium crystal we have a = 3.34A, T); = 527K and M = 209 x 1.67 x 10~2"kg.
We first estimate ¢ by neglecting fp in the above equation — we expect that Ty; > 6p. This yields

1/3
~ 1064 .
4MhCL m/s

CcC~ (kBTM)2
From ¢ we now deduce the Debye temperature as
h
Op = k—c2\/7?(2\/7?/3)1/3 ~ 51K
B

which indeed is much smaller than T3, and our solution is self-consistent. The values of ¢ and 0p

appear to be reasonable as they fall within the expected range for solids.



