
Physics 502 - Solutions for assignment #1

(Dated: October 10, 2023)

1. Second quantization

a. From the definition of a second quantized operator, we can write the total spin operator as

Stot =

∫
d3r d3r′

∑
α,β

〈r, α|S|r′, β〉ψ̂†α(r)ψ̂β(r′) (1)

where 〈r, α|S|r′, β〉 = (~/2)σαβδ
(3)(r − r′) is the “first quantized” total spin operator in the

position, spin basis and ψ̂α(r) is the field operator that creates an electron with spin α at position

r. Hence, we can simplify the second quantized expression to

Stot =
~
2

∫
d3r ψ̂†α(r)σαβψ̂β(r) (2)

where repeated indices are assumed to be summed over herein. The total spin can be written in

terms of the spin density S(r) as Stot =
∫
d3rS(r) and so we recognize the spin density as

S(r) =
~
2
ψ†α(r)σαβψ̂β(r). (3)

We can expand the operator in terms of the annihilation operator ckα for an electron plane

wave of momentum k and spin α as

ψ̂α(r) =
1√
V

∑
k

eik·rckα (4)

and hence

S(r) =
~

2V

∑
k,k′

e−i(k−k
′)·rc†kασαβck′β. (5)

b. We can write the Hamiltonian as

H = T + V (6)

where

T = −
∫
d3r ψ̂†α(r)

~∇2
r

2m
ψ̂α(r) (7)

V =
1

2

∫
d3r d3r′ ψ̂†α(r)ψ̂†β(r′)

e2

|r − r′|
ψ̂β(r′)ψ̂α(r). (8)

To compute [H,Stot], we will make liberal use of the following easily proven identities for

arbitrary operators A, B, and C:

[A,BC] = [A,B]C +B [A,C] (9)

[A,BC] = {A,B}C −B {A,C} (10)
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Using these and {
ψ̂†α(r), ψ̂β(r′)

}
= δαβδ

(3)(r − r′) (11){
ψ̂α(r), ψ̂β(r′)

}
= 0 (12)

we can compute the commutator with each of the two terms of the Hamiltonian in turn.

[T,Stot] = − ~2

2m

~
2
σµν

∫
d3r d3r′

[
ψ̂†α(r)∇2

rψ̂α(r), ψ̂†µ(r′)ψ̂ν(r′)
]

= − ~3

4m
σµν

∫
d3r d3r′

{[
ψ̂†α(r)∇2

rψ̂α(r), ψ̂†µ(r′)
]
ψ̂ν(r′) + ψ̂†µ(r′)

[
ψ̂†α(r)∇2

rψ̂α(r), ψ̂ν(r′)
]}

= − ~3

4m
σµν

∫
d3r d3r′

{
ψ̂†µ(r)∇2

rδ
(3)(r − r′)ψ̂ν(r′)− ψ̂†µ(r′)δ(3)(r − r′)∇2

rψ̂ν(r)
}

= − ~3

4m
σµν

∫
d3r

{(
∇2
rψ̂
†
µ(r)

)
ψ̂ν(r)− ψ̂†µ(r)∇2

rψ̂ν(r)
}

= − ~3

4m
σµν

∫
d3r

{
ψ̂†µ(r)∇2

rψ̂ν(r)− ψ̂†µ(r)∇2
rψ̂ν(r)

}
= 0 (13)

where, in the fourth and fifth equalities, we have integrated by parts. The boundary terms vanish

due to the periodic boundary conditions of the field operators. A similar calculation can be

performed to show that [V,Stot] = 0 which is more straightforward since there is no derivative

operator.

Equivalently, the calculation can be done in terms c†, c operators. This is slightly more messy

because of many k-summations involved but on the positive side there are no gradient terms to

worry about so the evaluation of the kinetic term is easier.

2. Polarized electron gas

Most of this question was done in class – we just have to adapt the results to the situation with

unequal population of spin-up and -down electrons.

a. The energy of an electron gas to first order in the Hartree-Fock expansion is given by:

E = RyN

[
3

5
(kFa0)

2 − 3

2π
(kFa0)

]
where Ry = e2

2a0
is the Rydberg constant. The first term is the kinetic energy while the second is

the exchange energy.

For the polarized gas E = E↑ + E↓, N is replaced by N± and kF is replaced by kF±. The

separation of the potential energy term is non-trivial and follows from the fact that only the σ = σ′
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FIG. 1: a. rs < 5.45, 6.03 The second derivative of the energy at M = 0 is positive - minimum. In addition,

the non-polarized state has lower energy. b. 5.45 < rs < 6.03 E(M = 0) is still a local minimum but

the non-polarized state has higher energy then the maximally polarized one. c. rs > 6.03 E(M = 0) is a

maximum and the non-polarized state has higher energy then the maximally polarized one.

term contributes to the exchange energy. We can express everything in terms of M and N using

k3F±
6π2

=
N±
V

and N± =
N

2
(1±M)

and with the definition of rs in terms of N
V (rs =

(
3V
4πN

)1/3 1
a0

) we find:

E = RyN

(
9π

4

) 1
3 1

2rs

[
3

5

(
9π

4

) 1
3 1

rs
((1 +M)

5
3 + (1−M)

5
3 )− 3

2π
((1 +M)

4
3 + (1−M)

4
3 )

]

= RyN
1

2

[
2.21

r2s

(
(1 +M)

5
3 + (1−M)

5
3

)
− 0.916

rs

(
(1 +M)

4
3 + (1−M)

4
3

)]
The factor of 1/2 in front comes from the fact that the initial expression for the energy assumed

equal number of spin up and spin down electrons so, when we add each contribution explicitly, we

must divide by two to avoid over counting.

b. The energy difference between the maximally polarized state and the non-polarized state is:

∆E = RyN

(
9π

4

) 1
3 1

2rs

[
3

5

(
9π

4

) 1
3 1

rs
(2

5
3 − 2)− 3

2π
(2

4
3 − 2)

]

which becomes negative for

rs > rcs =

(
9π

4

) 1
3 2π

5

(2
5
3 − 2)

(2
4
3 − 2)

≈ 5.45

Below a critical electron density the exchange energy dominates and the system minimizes its

total energy by ferromagnetic alignments of spins.

c. We investigate the magnetization dependence of the energy near M = 0. The first derivative

is always zero at M = 0 due to the relative sign between the (1 + M)y and the (1 −M)y terms.
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This point is an extremum. We can determine whether it represents a maximum or a minimum by

taking the second derivative:

d2E

dM2
= RyN

(
9π

4

) 1
3 1

2rs

[
2

3

(
9π

4

) 1
3 1

rs
((1 +M)−

1
3 + (1−M)−

1
3 )− 4

6π
((1 +M)−

2
3 + (1−M)−

2
3 )

]
.

At M = 0 this expression changes sign when

rs =

(
3π2

2

) 2
3

≈ 6.03

Hence we conclude that E has a minimum at M = 0 when rs < 6.03 and a maximum otherwise.

The behaviour of E(M) is summarized in the figure.

3. The Hartree-Fock correction

As you have seen in class, in the Hartree-fock approximation the spectrum is given by: H =∑
kσ(εk + δεk)c

†
kσckσ. The correction δεk is found by summing over the potential (we can do this

at T = 0 with a step function at kF ). With the Coulomb potential this leads to

δεk = − 1

π
2e2kFF (

k

kF
),

F (x) =
1

2
+

1− x2

4x
ln

∣∣∣∣1 + x

1− x

∣∣∣∣ .
a. To find the Fermi velocity we need to take a derivative at k = kF ,

vF =
∂Ek
∂k

∣∣
kF

=
~2k
m
− 2e2

π

[
1

2x
− 1 + x2

4x2
ln

∣∣∣∣1 + x

1− x

∣∣∣∣] ,
where x = k/kF . From the above expression one can see that when k → kF (x → 1) vF diverges

logarithmically.

b. Recall that the density of states can be calculated by integrating over a surface of constant

energy (in our case the Fermi energy):

g(E) =

∫
1

|∇kEk|
· d~S.

This means that if vF diverges (at kF , regardless of orientation) then the density of states must

vanish. The Sommerfeld expansion follows from expanding K(ε) =
∫ ε
−∞H(ε′)dε′ near ε = µ in the

expression ∫ ∞
−∞

H(ε)f(ε)dε =

∫ ∞
−∞

K(ε)

(
− ∂f(ε)

∂ε

)
dε.
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However, for the case at hand, the function H(ε) is non-analytic at the Fermi surface and the

expansion is not justified. In general, a vanishing density of states will lead to difficulties calculating

thermodynamic properties such as the specific heat. Consider the expression

CV =

∫ ∞
0

(ε− εF )
∂f

∂T
g(ε)dε ≈ g(εF )

∫ ∞
0

(ε− εF )
∂f

∂T
dε, (14)

where we have pulled g(εF ) outside the integral since (ε − εF ) ∂f∂T is sharply peaked around the

Fermi energy. If g(εF ) vanishes, this is no longer valid. The problem is you can’t ”heat up” the

system if no energy eigenstates are available.

c. The Fourier transform of the screened Coulomb potential is

V (k) =
4πe2

k2 + µ2
.

Performing the sum δεk =
∑

k′<kF
V (k− k′) gives:

δεk =
e2

π

{
−kF + µ

[
tan−1

(
k + kF
µ

)
+ tan−1

(
k − kF
µ

)]
+
k2 − k2F − µ2

k
ln

∣∣∣∣(k − kF )2 − µ2

(k + kF )2 − µ2

∣∣∣∣} .
Clearly, there is no divergence at k → kF and therefore vF as well as the density of states at the

Fermi energy are finite.


