
P502 Problem set # 5 Due: Dec. 6, 14:30

1. (25 points) “Thermally activated conductivity in a band insulator” When the Fermi
level lies inside the band gap all the energy bands in the solid are either filled or empty
and, as a result, electrical conductivity vanishes. However, this statement is strictly true
only at T = 0. At any nonzero temperature electrons will be thermally excited across
the gap giving rise to a finite population of electrons in the upper (conduction) band and
holes in the lower (valence) band. These thermally activated carriers then produce nonzero
conductivity in the insulator. In this problem we examine a simple generic model for such
thermally activated conductivity.

Consider a two dimensional (2D) system whose energy spectrum in the vicinity of the
Fermi level is described by

ε(k) = ±
(

∆ +
h̄2k2

2m∗

)
. (1)

Here k2 = k2
x +k2

y (we are in 2D), 2∆ > 0 is the band gap and Fermi energy is εF = 0. The
dispersion (1) can be thought of as a generic expansion of the energy near the isotropic
band maximum/minimum and is frequently used in semiconductor physics.

a) Calculate the density of states ρ(ε). Sketch ρ(ε) and indicate which levels are
filled/empty at T = 0 and T > 0. Show that chemical potential will remain pinned at
zero energy even at T > 0.

b) As a warm-up exercise calculate the specific heat cv(T ) and show that it can be
written as

cv(T ) = C1

∫ ∞
∆

dε
(βε)2

cosh2(1
2
βε)

(2)

where β = 1/kBT and C1 is a T -independent prefactor. Determine C1.
c) Find the leading T -dependence of cv(T ) in the limiting cases kBT � ∆ and kBT �

∆. Show that in the former case specific heat becomes exponentially activated, cv(T ) ∼
e−∆/kBT . What is the behavior in the opposite limit, kBT � ∆? Give the physical
interpretation of these limiting forms.

d) Derive the exact result for DC electrical conductivity within the relaxation time
approximation assuming constant τ . Show that it can be written in the form

σµν = C2δµν

∫ ∞
∆

dε
β(ε−∆)

cosh2(1
2
βε)

(3)

where β = 1/kBT . Determine C2. Examine the properties of the integral in Eq. (3) and
find the leading T -dependence of σµν in the limiting cases of kBT � ∆ and kBT � ∆.

e) Neglecting the electro-thermal effects calculate the thermal conductivity κµν within
the same set of approximations as above. Is Wiedemann-Franz law satisfied in any of the
limiting cases? Explain.
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Hint: Integrals of the type appearing in Eqs. (2) and (3) can in general be evaluated only

numerically. However, the leading behavior in the limiting cases can be extracted analytically

in the following manner. (This technique can be thought of as a “Sommerfeld expansion” for

an insulator.) In the case kBT � ∆ notice that the argument of cosh is always large meaning

that cosh can be approximated by an exponential. The remaining integral is elementary. This is

equivalent to replacing Fermi-Dirac distribution by Maxwell-Boltzmann. Think about why this

is the right thing to do in the low-T regime. In the case kBT � ∆ it is convenient to write the

integral as
∫∞

∆ =
∫∞

0 −
∫∆

0 . The first integral can be evaluated exactly (with help of Mathematica

or tables). In the second integral notice that the argument of cosh is always small and can be

approximated by cosh(0) = 1. The remaining integral is again elementary.

2. (10 points) “E-ph interaction in 1D” Consider a one-dimensional system of elec-
trons interacting with phonons according to the standard Frölich Hamiltonian,

H =
∑
k

εkc
†
kck +

∑
q

h̄ωqa
†
qaq +M

∑
k,q

(a†−q + aq)c
†
kck−q,

with h̄ωq = W | sin(qa/2)|. The lattice, originally of spacing a, has become dimerized by
the e-ph interaction so that period is now 2a. A gap has consequently appeared in the
electron band structure at k = π/2a and the energy dispersion of the two bands is

εk = ±[A+B cos(2ka)],

with A and B both positive and A − B � W > 0. Consider the case of one electron
per atom, i.e. the lower band completely filled. The matrix element M is a constant and
M2 = G/N , with N the number of atoms. Find the condition on the magnitude G in terms
of W , A, and B in order for the phonon energy at q = π/a to be reduced to zero. Interpret
this result physically.

2


