1. (20 points) Ground state of weakly interacting bosons.
a) The Bogoliubov transformation can be expressed as

$$
\binom{\alpha_{\mathbf{k}}}{\alpha_{-\mathbf{k}}^{\dagger}}=\left(\begin{array}{cc}
u_{\mathbf{k}} & -v_{\mathbf{k}} \\
-v_{\mathbf{k}} & u_{\mathbf{k}}
\end{array}\right)\binom{a_{\mathbf{k}}}{a_{-\mathbf{k}}^{\dagger}},
$$

with $u_{\mathbf{k}}$ and $v_{\mathbf{k}}$ real even functions of \mathbf{k}. Show that, with the condition $u_{\mathbf{k}}^{2}-v_{\mathbf{k}}^{2}=1$, the matrix $U_{\mathbf{k}}$ in the above equation describes a symplectic (not unitary) transformation. Consult your favorite linear algebra book or Wikipedia for the definition of a symplectic matrix.
b) Find factors $u_{\mathbf{k}}$ and $v_{\mathbf{k}}$ required to bring the Bogoliubov Hamiltonian into the diagonal form $H=\sum_{\mathbf{k}} \hbar \omega_{\mathbf{k}} \alpha_{\mathbf{k}}^{\dagger} \alpha_{\mathbf{k}}$. To this end use substitution $u_{\mathbf{k}}=\cosh \theta_{\mathbf{k}}$ and $v_{\mathbf{k}}=\sinh \theta_{\mathbf{k}}$ which automatically assures $u_{\mathbf{k}}^{2}-v_{\mathbf{k}}^{2}=1$. Then show that $\hbar \omega_{\mathbf{k}}=\sqrt{\hbar^{2} \Omega_{\mathbf{k}}^{2}-\eta_{\mathbf{k}}^{2}}$ and

$$
\tanh 2 \theta_{\mathbf{k}}=-\frac{N V_{\mathbf{k}}}{\epsilon_{\mathbf{k}}+N V_{\mathbf{k}}}
$$

c) The ground state $\left|\Phi_{0}\right\rangle$ has the property

$$
\begin{equation*}
\alpha_{\mathbf{k}}\left|\Phi_{0}\right\rangle=0, \quad \text { for all } \mathbf{k} . \tag{1}
\end{equation*}
$$

Explain why this is so. Then show that the average number of bosons occupying a state with momentum \mathbf{k} in the ground state is

$$
\bar{n}_{\mathbf{k}} \equiv\left\langle\Phi_{0}\right| a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}\left|\Phi_{0}\right\rangle=v_{\mathbf{k}}^{2} .
$$

Assuming constant $V_{\mathbf{k}}$ sketch $\bar{n}_{\mathbf{k}}$ versus $|\mathbf{k}|$ and comment on the result.
d) Find the explicit expression for the ground state wavefunction $\left|\Phi_{0}\right\rangle$. This should be in a form $\hat{O}|0\rangle$ where \hat{O} is an operator composed of $a_{\mathbf{k}}^{\dagger}$'s and $|0\rangle$ is the vacuum state (no bosons). Hint: Note that Eq. (1) implies $a_{\mathbf{k}}\left|\Phi_{0}\right\rangle=\left(v_{\mathbf{k}} / u_{\mathbf{k}}\right) a_{-\mathbf{k}}^{\dagger}\left|\Phi_{0}\right\rangle$. Consider \hat{O} of the form $\Pi_{\mathbf{k}} \exp \left(z_{\mathbf{k}} a_{\mathbf{k}}^{\dagger} a_{-\mathbf{k}}^{\dagger}\right)$; also note that $\left[a,\left(a^{\dagger}\right)^{n}\right]=n\left(a^{\dagger}\right)^{n-1}$.
2. ($\mathbf{1 0}$ points) In the Bogoliubov model for liquid ${ }^{4} \mathrm{He}$ calculate the temperature dependence of the condensate density $n_{0}=N_{0} / \Omega$ at low T. Consider separately cases of short range ($V_{\mathbf{q}}=V_{0}=$ const) and long range ($V_{\mathbf{q}}=e^{2} / q^{2}$) interactions.

Hints: It is easiest to calculate the T dependence of the non-condensate density $n^{\prime}(T)$ first and then deduce $n_{0}(T)$ from the requirement that

$$
n_{0}(T)+n^{\prime}(T)=n,
$$

with $n=N / \Omega$ the total density which remains constant. Write $n^{\prime}(T)=\Omega^{-1} \sum_{\mathbf{k}}\left\langle a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}}\right\rangle$, then express it in terms of $\alpha_{\mathbf{k}}$ operators and use the fact that the Hamiltonian is diagonal
in these to evaluate the average. Assume that temperature is low enough so that $\mu \approx 0$. Extract the leading T-dependence of $n^{\prime}(T)-n^{\prime}(0)$ by neglecting all temperature dependence of the integrand except that coming from the Bose occupation factor and using the small k approximation for $\omega_{\mathbf{k}}$. Once you have the result check that this is in fact a reasonable approximation.
3. (20 points) Consider a simple cubic lattice with spacing a in dimension d, comprised of ions of mass M interacting via nearest neighbor harmonic potential with spring constant K. Answer the questions (a-d) below for $d=1,2,3$ (in most cases a simple answer in terms of d emerges, e.g. T^{d-1}).
a) Calculate the exact phonon spectrum $\omega_{\mathbf{k} \mu}$ and verify that for long wavelengths one obtains $\omega_{\mathbf{k} \mu} \simeq c|\mathbf{k}|$. Determine the sound velocity c.
b) In the above long wavelength limit calculate the phonon density of states $D(\omega)$ and deduce the T-dependence of the specific heat at low temperatures.
c) Propose the form of Debye approximation for this crystal suitable for various dimensions and determine Θ_{D} in terms of M, K and particle number N.
d) According to the Lindemann criterion the lattice melts when the root-mean-square fluctuation of the ion position reaches a significant fraction of the lattice constant: $\sqrt{\left\langle\mathbf{u}^{2}\right\rangle}=$ $c_{L} a$, where $c_{L}=0.10-0.15$ is the Lindemann number. Calculate the T-dependence of $\left\langle\mathbf{u}^{2}\right\rangle$ for our crystal and determine its melting temperature T_{M}. What does this imply for the stability of low-dimensional crystals?
e) Polonium metal has cubic structure with lattice constant $a=3.34 \AA$, atomic mass number 209 and melting point $T_{M}=527 \mathrm{~K}$. Based on this information estimate its spring constant K, Debye temperature Θ_{D}, sound velocity c (all in physical units) and comment on these results. Note: Isotopes of Polonium are rare, radioactive, and dangerous to human health. Don't try to verify these results at home!

