next up previous
Next: About this document ...

PHYSICS 312
SOLUTION TO PROBLEM SET 2 1999:


Problem 1:
In the steady state heat flows radially at the same rate as it is generated. The heat balance condition at radius $\rho$ is

\begin{displaymath}-\kappa\frac{du}{d\rho}4\pi\rho^2=\frac{4\pi H\rho^3}{3}\end{displaymath}

which simplifies to the first order differential equation

\begin{displaymath}\frac{du}{d\rho}=-\frac{H}{3\kappa}\rho\end{displaymath}

with solution

\begin{displaymath}u=-\frac{H}{6\kappa}\rho^2+a\end{displaymath}

where a is aa constant to be determined. The boundary condition at the surface $\rho=c$ is

\begin{displaymath}-\kappa\frac{du}{d\rho}=h(u-T)\end{displaymath}

We find

\begin{displaymath}a=\frac{H}{6\kappa}c^2+T+\frac{H\rho}{3h}\end{displaymath}

and

\fbox{\parbox{5cm}{
\begin{displaymath}u(\rho)=\frac{H}{6\kappa}(c^2-\rho^2)+T+\frac{H\rho}{3h}\end{displaymath}
}}

Problem 2:
The condition that the heat flow is constant can be written

\begin{displaymath}-4\pi\kappa r^2\frac{du}{dr}=const\end{displaymath}

We call this constant $4\pi\kappa a$ giving the differential equation

\begin{displaymath}\frac{du}{dr}=-\frac{a}{r^2}\end{displaymath}

with solution

\begin{displaymath}u(r)=\frac{a}{r}+b\end{displaymath}

The boundary conditions give b=T, a=-Tc and

\fbox{\parbox{4cm}{
\begin{displaymath}u(r)=T-\frac{Tc}{r}\end{displaymath}
}}

Note that the solution is independent of $\kappa$!

For problem 3: see attached Maple worksheet.

Return to title page.

 

Birger Bergersen
2000-02-21