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1 Introduction

1.1 About this course

Many of the important ideas on how to solve differential equations originate
in physics. Modeling of physical systems (or for that matter most scientific
modeling) requires an understanding of the mathematics of ordinary and par-
tial differential equations. The main topic of this course is the application of
differential equations to physics, with emphasis on boundary value problems.
We will find that a proper understanding often requires knowledge of some
areas of mathematics that are not covered in the standard set of courses
taken by UBC Physics Majors, so we will also have to stray beyond the con-
fines of the main topic. The wide availability of software environments such
as Maple, Mathematica and Mathlab has caused a profound change the way
physicists approach problems with mathematical difficulties, and I will try
to let the course reflect this. The main areas covered are:

e Introductory material (Complex algebra summation of series)

Ordinary and partial differential equations.

Fourier methods.

Bessel and Legendre functions.

Fourier transforms.

The material in these notes was last presented in class as part of the course
PHYS 312 at UBC January-April 2003. Included are also a number problems
that mostly constitute assignments and exams from the winter sessions 1999
2003, but also some that go further back. The problems are very much part
of the course, and without doing them you cannot expect to fully understand
the material. Solutions to the problems are available from the course web
site, as Maple worksheets.

You are encouraged to use soft-ware such as Maple or Mathematica to solve
the assignments! My own personal preference is Maple, and a .html version
of a number of Maple worksheets complementing the lectures are available
from the course web site. I recommend that you instead, download the
corresponding .mws version e.g to use as templates.



The Maple worksheets are generally produced using Maple 6, most of them
work well with Maple V. Whenever I am aware of a problem I have tried
to indicate where the instructions have to be modified to run on Maple V.
I have also posted a list of the Maple Worksheet indicating where different
Maple commands are first introduced.

1.2 Texts

If you need a general math reference I recommend purchasing Riley, Hobson
and Bence[10]. In preparing these notes I have used this book quite a bit,
their explanations, although concise, tend to be more complete than the
other books listed below. The second edition of the Riley et al. text contains
over 1200 pages, most of which are not required in this course. It does,
however, address a common problem for majors in undergraduate physics
courses, namely that you often are taught the necessary mathematics after
it is required in physics. Also, Physics Majors do not always have room in
their program for as many math courses as would be desirable. The Riley et
al. book may help to bridge the gap - it contains most of the math required
for an undergraduate degree in physics and I recommend it as a general
mathematical reference for physics students. You are likely to find it useful
even after you graduate. A similar book, which could serve almost as well,
but which you may find a bit harder to read is Arfken and Weber[1]. This
text also contains about 1000 pages, most of which are not required in this
course.

Much of the course is well covered by Powers[8]. which for many years was
the assigned text for PHYS 312. However, this book does not cover any
theory of complex variables, has very little on numerical methods, and it is
not useful as a general mathematics reference. The same can be said about
Boyce and DiPrima[2] which some of you purchased for MATH 215 and which
was until recently the text for MATH 316 at UBC. There is a great deal of
overlap between PHYS 312 and MATH 316. If you go to Richard Froese’s
home page http://edziza.math.ubc.ca/rfroese/ you will find links to both a
PDF and PS version of a set of lecture notes for MATH 316. Another text is
the slim (in size not in price) and quite elegant book by Logan [1998]. The
text is a bit advanced for this course, but would be very useful if you wish to
go into the material in more depth. Other references are given as we move



along. Some useful web links can be found by going to the course web site.

A few of the lectures hours was set aside as Maple tutorials. In prepar-
ing these tutorial I have made use of the introductory tutorial of Lynch[6].
When learning to use Maple I found the book by Koefler[5] very useful.
Another useful Maple reference is Monagan[7]. When it comes to projects
using Maple, the book by Enns and McGuire[3] offers many fine examples.
If you are comfortable using Maple or Mathematica, you will find this most
helpful in other courses and labs! For Mathematica users Wolfram[11] is the
standard reference.

1.3 Complex Algebra

The main topic of PHYS 312 is the study of boundary value problems arising
from the partial differential equations of physics. Many of the methods used
to do this become much more transparent and straightforward if one can
appeal to the theory of complex variables. For this reason I will start the
course by a brief introduction to complex algebra. Time restrictions prevent
me to go into the theory in depth. To do this you need to take courses such
as MATH 300 and 301.

COMPLEX VARIABLES AND NUMBERS

A complex number is an ordered pair (a,b) of real numbers a, b written as
a-+1ib; 1= V-1
Similarly a complex variable can be written
z=x 41y
with z,y real variables.

Perhaps the first place where you have encountered complex numbers is in
solving polynomial equations. For example the quadratic equation

224+ 2az+b=0



has two roots
21=—a+Va2—b, zo=—-a—+Va2->

If a® > b the roots are real, if not they are complex. In general the fundamental
theorem of algebra states a n'th order polynomial can be written

P(2) = ap2" - a32° + a1z +ag = an(z — 2,)(2 — 2p_1) -+ (2 — 21)

where
Z1,%2y," " " Zn

are the n (possibly complex) roots of
P(z)=0

Complex numbers can be presented graphically:

= :

a :

> ; Argand diagram
8 ] y of complex plane
(@) .

g ;

£ > 0 5

Real part

In polar coordinates:
x =rcosf;y =rsinf

1Y
9_ =t 17, _ — 2 2
= arg(z) = tan = |z| =\/22 +y

The rule for addition of two complex numbers is the same as for vector
addition
21+ 20 = o1 + 22 +i(y1 + 1)



Adding two
/\ Z2 complex
> numbers

2=21+Z2

Imaginary part

z1

»
>

Real part

The rule for multiplication is
2129 = (21 + iy1) (T2 + 1Y) = 172 — Y1y2 + i(T1y2 + Tay1)
In polar coordinates we have
2122 = rirgexpi(fy + 6o)

Using the polar representation the laws of multiplication of complex numbers
can be written

z = ry exp(iby)ro exp(iby) = rire exp(i(6; + 62))

Suppose z = z + iy We will often need the complex conjugate
2= —1y
the real part
1
Rez =1z = §(z+z*)

the imaginary part

1
I _ = _ *
mz—ZZ_(z 2%)

the and the absolute value

|z| = Vzzr = 2?2 + 2
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FUNCTIONS OF COMPLEX VARIABLES

The elementary functions of real variables can be generalized to allow com-
plex arguments. The most important such function is the exponential. The
exponential with a complex arguments can be defined from the power series
2 n
z

z
exp(z):1+z+§+...ﬁ+,_,

With this definition the property
exp(z1 + z2) = exp(z1) exp(22)

can be shown to be preserved. The power series expansions can also be
used to extend the definitions of the trigonometric functions to the complex
domain

] 23 z5 00 (_1)nz2n+1

sinzg=2——+—+---= A
31" 5! ;::0 (2n+1)!
22 24 ) (_l)nz2n

COSZ:1_§+E+-”:T§W

We have

GOSN C)

exp(if) = 1+ 16 + 51 o

8



62 6 , 63
:1—§+E+"'+Z(9—§+"')
Hence
exp(i6) = cos @ + isinf
The sine and the cosine of a complex variable can thus be expressed as

sin(z) = %[exp(iz) ~ exp(—i2)]

cos(z) = %[exp(iz) + exp(—iz)]

The hyperbolic functions sinh, cosh and tanh are closely related to the trigono-
metric functions. The definitions are

exp « + exp(—x)

cosh(z) 5

exp  — exp(—z)

2
sinh(z)  expz — exp(—z)
cosh(z)  expw + exp(—7)

sinh(z) =

tanh(z) =
The trigonometric and hyperbolic functions are related by
cosh(iz) = cos(z)

sinh(iz) = isin(z)

The inverse of the exponential is the natural logarithm. We require that
Inz = In(rexp(if)) = lnr + 0

We have that
exp(i6) = exp(i[f + 2mn))



where n is an arbitrary integer. The value of the imaginary part of the
logarithm is thus undetermined up to a multiple of 27win (or we say that In z
is a multivalued function). We still have

exp(lnz) =2

no matter which value of the integer n we use when evaluating the logarithm.
The principal value of the logarithm restricts the phase angle € so that

—r<f<m
Similar considerations apply to the power function. We define
b* = exp(z1nb)
where both z and b may be complex. Thus b* can take on any value
b* = exp(z[lnb + 27ni])

We will find that using software such as Maple can be very useful in this
course. I will complement these notes occasional Maple worksheets which
can serve as examples or templates the first of these is at:
http://www.physics.ubc.ca/ birger/n31211.mws or .html.

SUMMARY
e We began our discussion of functions of complex variables by discussing
e Complex algebra
e Complex functions

e We have shown how complex numbers, variables and functions can be
manipulated in Maple.

PROBLEMS
Problem 1.3:1
Show that

sin(z + iy) = sinz cosh y + 7 cos zsinh y

10



sinh(z + iy) = sinh z cosy + i cosh z siny
cos(z + iy) = cosx coshy — isin z sinhy

cosh(z + iy) = coshz cosy + isinhzsiny

Problem 1.3:2
Two complex numbers z and w are

z=1414 w=1-2
Find
a: z+w
b: wz
c: z/w

Problem 1.3:3
By considering the real and imaginary parts of the product

£it o0
prove that
sin(¢ + ) = sin ¢ cos @ + cos @ sin
cos(¢ + 6) = cos ¢ cos @ — sin ¢ sin 6§

Problem 1.3:4
Use the definition

et 4+ e *

to show that o1+
tanh !(2) = = In il
2 1—z

Assume that z and z are real in the above formulas (the inverse hyperbolic
tangent is sometimes written arctanh).

11



Problem 1.3:5
In this problem z =1+, w = 2 — 7. Evaluate the real and imaginary parts
and the absolute value of

a: vV1+zxw.
b: 1/(z — w)

c: sin(z% — w)

Problem 1.3:6

For what values of the complex variable z will
a: Rz3 >0

b: 23 =1

c: cos(z) =2

1.4 Series expansions.

Many of the methods for solving differential equations involve expansions in
series of different kinds. Let us therefore recapitulate some of the properties
of series expansions that you may have forgotten from previous math courses.
Most series that we will encounter are infinite sums, but we may be able to
obtain a good approximation by performing a partial sum

SN:81+82+"'8N

If the limit
S = lim Sy <
N—o00

exists we say that the series is convergent.

Suppose we have a series on the form
o0
S = Z Uy,
n=1

If the series -

n=1

12



is convergent, the series S is absolutely convergent.
If a series contain only positive terms, it is not enough that

uy = 0as N — oo

for the series to converge.

EXAMPLE

The harmonic series L1 1
1 _ — [
+ 2 + 3 + 4
is divergent. This can be seen by grouping the terms
1 1+(1+1+1+1)+(1 1
4 5 6 7

8E)+

Each expression inside a ( ) is greater than 1 and the series

il
272722

is clearly divergent.
There are many tests for absolute convergence (a number of them are listed
in Riley, Hobson and Bence[10], and also in Arfken and Weber[1]). The test

which will be most useful to us is the D’Alembert ratio test:
Suppose

o0
S = Z Up,
n=1
with all the terms u,, of the same sign. Also assume that the limit

Un+1

= lim
p n—00 un

exists. If
e p < 1 the series is absolutely convergent.
e if p > 1 the series is divergent.

e if p =1 the series could be either convergent or divergent.

13



EXAMPLE:

The series
g1 1 1 1 1
T TR
is absolutely convergent because
Upi1 n! 1

= = — 0 —
Un (n+1)! n+4+1 e ee

ALTERNATING SERIES
If the terms u, in our series have alternating signs then the condition for
convergence is weaker = it is enough that

lim u, — 0
n—oo

An alternating series that is convergent, but not absolutely convergent, is
said to be conditionally convergent The terms can be summed up in any
order if the series is absolutely convergent. However, if the series is only
conditionally convergent, the result of summing the series will depend on the
order in which the terms are summed.

EXAMPLE
The alternating harmonic series
1)”Jrl 1 1 1
S = l— - — 4

Z 2 3 4
is conditionally convergent (it can be shown to sum to In2). If, however, for
some reason we choose to sum two even terms for each odd term, we can
group the terms

1 1 1 1 1
S=1-z-)+(=z—-=-=
( 2 4)+(3 6 8)jL
=3 e
=0 2n+1 C4An+2 4An+4
1

)

- Z2n+1 o + 2

14



1 1 1 S
—Z(1—Z4+Z_.. ==
2( 2 + 3 ) 2
and the series converges to half of what it did before! Clearly, conditionally
convergent series can be treacherous.

There are two special series which I expect you to be able to recognize:

ARITHMETIC SERIES
The distinguishing feature is that the difference between successive terms is
constant

SN:a+(a+d)+(a+2d)+---+(a+(]\7—1)d)):g(awLa—l—(N—l)d)

N
= E(first + last term))

Infinite arithmetic series diverge, so only the finite version makes sense.

GEOMETRIC SERIES

The ratio of successive terms is a constant for a geometric series:

Sy=a+ar+ar? - +ar¥!

This series can be summed noting that

Sy —rSy =a— ar
so that N
1—
5, —al=r")
1—r
This series converges as N — oo to
a
S =
1—7r

if |r] < 1. If |r| > 1 it diverges.

SERIES OF FUNCTIONS
We next include the possibility that each term u,, in a series is not a number
but some function of a variable z. The partial sum

Sn(2) = u1(2) + ua(z) - -+ + up(2)

15



is then a function of z. If the series converges for all z in some interval
a > z > b (or some region of the complex plane if z is complex) the series is
said to be uniformly convergent in the interval, and defines a function S(z).
An important case is the Taylor expansion

f(z—a) =f(a)+(z—a)d_f (2 —a)*d’f (z—a)df

dzza 21 ﬁz n! dz"z

=a

=a

A special case is the power series, or Maclaurin series which is a Taylor series
with a =0

df(0)  22d%f(0) 2" d"f(0)
t2 dz 2l dz2 +ﬁ dz"

f(z) = £(0) +

We made use of the idea of defining a function from its power series (section
1.3), when we defined the exponential with complex exponent from its power
series. We will later consider other types of series of functions such as the
cases where negative powers of z may occur (Laurent series), or where u,(2)
is a trigonometric function (Fourier series), Bessel function or polynomial.

Convergent series can generally be integrated term by term, but differentia-
tion can give bad results when the series is only conditionally convergent.

We finally note that the work associated with carrying out partial sums and
other operations with series can be quite tedious if done by hand. In the
worksheet Summing series with Maple

http://www.physics.ubc.ca/ birger/n31212.mws (or .html)

I give examples on how one can manipulate series on the computer.

SUMMARY
We have discussed some properties of series expansions and concepts such as

e partial sums
e absolute, conditional and uniform convergence
e series of functions including

e Taylor and Maclaurin series

16



PROBLEMS

Problem 1.4:1
In the theory of polarization of dipoles one encounters the Langevin formula

P(z) = p(coth — )

where z is Eu/kgT, p is the dipole moment, E is the field, kg the Boltz-
mann constant and 7" the temperature. Make a McLaurin expansion of this
expression for small = (low field, high temperature)up to and including z*.

Problem 1.4:2

You invest $ 1000 on the first day of each year and interest is paid at 5% on
your balance at the end of each year. How much money do you have at the
end of 25 years, assuming you pay no taxes,and that you havent yet made
the 26th payment.

Problem 1.4:3

Find the Maclaurin series for )

1+ 22

Problem 1.4:4
In the special theory of relativity two velocities v; and vy add according to

the formula
U1 + (%)

V102
1 L

Work out the first few terms in a Taylor expansion of v(vq,v2) about

a: v1 =0,v,=0
b: v1 =c,v3 =0
C: V1 =C V3 =¢C
Problem 1.4:5
a: Find the Maclaurin series for

1+z
1—2z

17



b: Show that the series in a: is convergent for z = 1/2 and divergent for
T =2.

Problem 1.4:6
Find the limit as £ — 0 of

sinx — zcoshzx

sinhz —
2 Ordinary differential equations

2.1 Different kinds of differential equations.

Having disposed of some mathematical preliminaries, we now proceed to the
main topic of this course, namely the solution of differential equations. The
main effort will be on partial differential equations, but, as we shall see,
many methods of solving such equations rely on converting the problem to
one of ordinary differential equations. This and the following subsections are
mainly a review with the motivation of preparing the ground for studying
partial differential equations.

TERMINOLOGY:
Ordinary versus partial differential equations.
In a partial differential equation such as
or k62T
ot Ox?
T = dependent variable.
t, r = independent variables.
Ordinary differential equations have only one independent variable e.g x in

— = kzu

dx
Partial differential equations have more than one independent variable. It
doesn’t matter for this classification if there are more than one dependent

variable e.g.
dx

it "

18



dv
— = -
dt

is a system of ordinary differential equations.

LINEARITY
A differential equation (partial or ordinary) is linear if it is linear in the

dependent variable(s) e.g.
T 0T
ot Oz?
is linear (it doesn’t matter that it is nonlinear in the independent variable!).

The ordinary differential equation

%:kxu

is also linear.

An example of a nonlinear differential is the Navier-Stokes equation

% + (7 V)T = —%vav?mf

The non-linearity comes from the term
(v-V)v

which is nonlinear in the dependent variable. Non-linear equations are much
harder to solve than linear equations, and we will not have much to say about
them in this course.

HOMOGENEOUS EQUATIONS
If a differential equation has the property that putting the dependent vari-
able(s) to zero gives a solution, then the equation is homogenous.
E.g.
vy = -2

€0
is homogenous only if p = 0, otherwise the equation is non-homogeneous.

An important property of linear homogeneous differential equations is the
superposition principle:

19



Suppose u; or us are solutions to a linear and homogeneous ordinary or
partial differential.equation. Then

U = C1LU1 + CoUo
is also a solution, with ¢; and ¢, arbitrary constants!

Software such as Maple or Mathematica can be invaluable in solving differ-
ential equations. We give some examples in the Maple worksheet
http://www.physics.ubc.ca/ birger/n31213.mws (or .html).

SUMMARY
We have

e distinguished independent and dependent variables. Ordinary differen-
tial equations have only one independent variable. Partial equations
have more than one such variable.

e defined linear and homogeneous differential equations and established
the superposition principle for linear homogeneous equations.

e showed examples of the solution of differential equations using Maple.

PROBLEMS

Problem 2.1:1
Some chemicals A, B and C' undergo the reaction

A+B —=C

The concentrations satisfy the differential equation (t is time).

dC(t)

== = kA()B()

Initially (¢t = 0) the concentration of A is Ay, the concentration of B is By
and the concentration of C' is zero. Find C(t) if

a Ay = By. Plot the result assuming Ag =k =1, t = 0..10.

20



b Ay # By. Plot the result assuming A =k =1, By =2, t =0..10.

Problem 2.1:2
Solve numerically the differential equation

d*y 3
e TV =0
with initial condition y(0) = 0, %42 = 1 in the range 0 < ¢ < 10 and plot

dt
the result!

Problem 2.1:3

Big fish sometimes eat little fish. If they don’t find little fish they starve,
but if they find them the population prospers. The little fish reproduce at
a certain rate, but when too many are eaten by the big fish the population
declines. Vito Volterra modeled this by the differential equations

dNg

—— = —aN bNg N
o7 alNg +0NBINE,
dNy,

—— =c¢N; —dNgN
dt CINL BIVL

For numerical illustration put a = 2, ¢ =1, b = d = .01. Plot the number
of big fish Np vs the number of little fish N for suitable initial conditions.
Also make a plot of Ny and N vs. time for the same initial conditions.

Problem 2.1:4
The concentrations of the chemicals A,B and C undergoing the reaction

A+B&C
satisfy
% — —kfAB + k,C
Cil—f = —k;AB + k,C
% = ktAB — k,C

21



where ky and K, are the forward and reverse reaction rates. Solve the equa-
tions and plot the time dependence of the concentrations if in appropriate
units

a: ky =k, =1, A(0) = B(0) = 1, C(0) = 0.
b: k; =1, k, =0, A(0) = B(0) = 1, C(0) = 0.

Problem 2.1:5
Solve numerically the differential equation

d*x 3
ﬁ +tx” = 0
for ¢ > 0 with the initial value
dz
0 0,—=1

and plot the result. Locate the 2 lowest values of ¢ for which the solution
returns to x = 0.

Problem 2.1:6
It is desired to explore how the solution of the differential equation

dy

— = o8 ,y(0) =

Iz (rzy),y(0) = a

depends on the initial condition a. Solve the equation numerically in the
range x = 0..4 and plot the result for a = 1,2,3

Problem 2.1:7

A certain species of bacteria exists in a "normal” form and as one of two
mutant variants. Let IV be the relative concentration of the normal form. A
?killer” mutant (concentration K) excretes a toxin which is harmful to the
normal bugs, but the killer mutant has developed a resistance. This toxin can
only be produced at a certain metabolic cost and soon a second, ”cheater”,
mutant (concentration C') develops that is resistant to the toxin, but is ”too
lazy” to produce it. However the resistance also carries a cost and once the

22



cheater becomes dominant there is no longer a need to be protected against
the toxin, and the normal form exhibits a resurgence. Assume that the above
situation can be described by the set of differential equations

dN
— = N(8C - 3K)
dK
dC

a: Assume that in appropriate units, initially N = K = C = 1/3, and that
a=0.2, §=0.350=0.45. Integrate the differential equations numerically,
and plot the result for a few periods of the natural oscillations of the system.
b: Show that

N + K + C = const

and verify numerically that this hold for your solution.
c: Show that

d
%(alanL,Ban—i—dlnC’) =0

and verify numerically that this holds for your solution.

2.2 Review of ordinary differential equations

LAST TIME
Started to discuss differential equations

e We made a distinction between dependent and independent variables.

e Differential equations were partial if there were more than one indepen-
dent variable.

e Ordinary differential equations allowed only one independent variable.

e Differential equations were linear if the were linear in the dependent
variable.

e Differential equation homogeneous if putting dependent variable(s) to
zero gave rise to trivial solution.

23



e We showed that linear, homogenous equations satisfy superposition
principle.

Today we will consider some important special cases of ordinary differential
equations.

LINEAR DIFFERENTIAL EQUATIONS
Most of the ordinary differential equations in this course will be linear
We write for the n’th order equation:

d™u "ty du
am T kn—l(t)m o kl(t)a + ko(t)u = ko(t)

putting the coefficient in front to the highest derivative equal to unity. If the
coefficients

kn—1(t), - ki(t), ko(t)

are continuous the differential equation is mon-singular. There is then a
unique solution if initial values of the dependent variable and its n — 1 first
derivatives are specified for some t. In initial value problems the indepen-
dent variable is very often time. Often some of the coeflicients k; are not
continuous. The equation is then singular and as we shall see "restrictions
do apply”. For example the differential equation

is singular at ¢t = 0.
First some special cases!

FIRST ORDER LINEAR EQUATIONS
The homogeneous linear equation

du
— +k(t)u=0
g TR

with the initial condition u = ug at ¢ = 0 has the solution

24



up(t) = ug exp|— /Ot k(r)dr]

If ug # 0 we can obtain a solution to the inhomogeneous equation

du
k(b = 11

by variation of parameters:
Substitution of

u(t) = v(t)un(t)

into the inhomogeneous equation yields

and finally

w(t) = un(t)(1+ /0 t fh((TT))dT)

U

If ug = 0 we have to use a slightly different procedure to avoid dividing by

zero in the boxed expression above. Let

ur(t) = expl— [ K(r)ar]

be the solution of the homogeneous equation with u,(0) = 1. Then

Fiam

0 ui(T)

u(t) = u(?)
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is the solution of the problem with «(0) =0

EXAMPLE:
Solve
du B
It +u =
with u(0) = 1.
SOLUTION:

un(t) = expl— [ dr] = exp(~)

t
o(t) = 1+/ reTdr =2+ et(—1 4 1)
0

u(t)=2e " +t—-1

If instead we have the initial condition u(0) = 0 the solution becomes

u(t)=t—1+e"

LINEAR SECOND ORDER EQUATIONS
Homogeneous case
The general solution to

d?u du
ﬁ + k(t)a +p(t)u =0

can be written on the form
u(t) = crui(t) + coua(t)

where ¢y, ¢ are constants and wuy(t), us(t) are linearly independent . Linear
independence implies that one cannot find a non-zero solution ¢y, ¢y to the
set of equations

C1U1 (t) + Cz’dz(t) =0
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for any t. This means that the Wronskian

ur(t) uolt
W - dtil((tz d’l?z((tg ‘ # 0
dt dt
Inhomogeneous case
d*u du
— + k(t)— thu = f(t
s RS+ plt)u = f(1

The general solution to the homogeneous problem f(¢) = 0 can be written
cruq (t) + cous(t)
The general solution to the corresponding inhomogeneous equation is then
crug (t) + cous(t) + uy
where u, is any particular solution to the inhomogeneous equation.
Suppose we have an initial value problem in which
u(0) = cyu1(0) + cous(0)
and

du
dt

d’lLQ
C —_—
> dt

It can be shown by substitution that the correct particular solution to the
inhomogeneous problem is

dul
=c—
o dt

t=0 t=0

w(t) = /0 "Gt 7 f(r)dr

where
uy (7T)ug(t) — ur(t)ua(r)

uy (7_) du;T(T) Uy (7_) du(;T(T)

G(t, 1) =

is called a Green’s function. If we can solve the homogeneous problem we
can also in principle solve the inhomogeneous problem!
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EXAMPLE

with u and du/dt specified for ¢t =0

The general solution to the homogeneous equation

d?u
ﬁ—i"u:o

can be written
up(t) = crua(t) + cous(t)
uq(t) = sin(t)
us(t) = cos(t)
Substituting the initial conditions gives two equations that can be solved for

c; and ¢

The Wronskian is particularly simple

W(r) = ul(T)du;(_T) B u2(7_)du;7(—7')

= —sin®(t) — cos?(t) = —1

Then
G(t, ) = cos(T)sin(t) — sin(7) cos(t) = sin(t — 7)

and
u(t) = ey sin(t) + ¢z cos(t) + /0 sin(t — 7)f (r)dr

To proceed further must specify f(7).
Unless f(7) is simple the integral may need to be evaluated numerically.

There are some more special cases that occur frequently enough that it may
be worthwhile to learn to recognize them
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SEPARABLE DIFFERENTIAL EQUATIONS
Sometimes differential equations can be integrated by separating the vari-
ables. As an example consider

dy
= _h
7, = Mw)g(2)
we find p
5=/
— = r)dx
Example

Biological populations are often modeled by the logistic equation

iP

where P(t) represents population size, the constants 3 and kare respectively
the net birth rate and the carrying capacity. We find

/%:ﬁ/dt

The integrals can easily be carried out to yield

P
k— P

In

‘ = k[t + const.

where C is a constant. We can solve this equation for P

K
P=
1+ exp(—rpt + C)

where the constant C' can be determined from an initial condition. We note
that in this example the population will always saturate at the value x after
a long time.

EULER’S DIFFERENTIAL EQUATION

d?y dy
agt? —= + ayt— + apy =0
2 a2 1 dt 0y
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is a second order Euler equation. It can by solved by the trial function
y =t

Substituting into the differential equation yields the second order algebraic
equation
)\()\ — 1)&2 + )\(11 + ag = 0

If the two roots A1, Ay are different the general solution will be
Yy = Clt)\l + C2t)\2
where ¢; and ¢y are constants. If the two roots coincide the solution is

y =t (cy + czInt)

SUMMARY
We have discussed

e linear

e singular and non-singular

e first and second order

e homogeneous and non-homogeneous ordinary differential equations.
We also introduced the

e Wronskian

e Green’s function method to solve inhomogeneous equation when solu-
tion to homogeneous equation was known.

e Finally we considered the special cases of Euler’s differential equation
and separable differential equations.

PROBLEMS
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Problem 2.2:1

Solve
@ +tu=t
dt

a: with «(0) = 1.

b: with «(0) = 0.

Problem 2.2:2

The differential equation

t2d2—u + Li=o0

a2 4

has

u=t

as a solution. Find a second linearly independent solution.

Problem 2.2:3
Find the general solution to

d*u ydu
@—20/ w—i—au:()

Problem 2.2:4

An unstable isotope A can decay to another unstable isotope B or to a stable
isotope C. B decays to C. The number of atoms of each species satisfy the

differential equations

dA

— =—(M+X)A
o7 (A1 + A2)

dB

— = )MA—-)\B
o7 1 3

dC

— = XA+ \3B
It 2A + A3

Assuming that there are initially N A-atoms, and no B- or C-atoms, find the

number of C-atoms at later times.
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Problem 2.2:5
a: Find two linearly independent solutions to

d*u
— —u=0

dt?

b: What is the associated Wronskian?
c: Use your results under a: and b: to find the general solution to

d: Verify by substitution in the differential equation that your solution ac-
tually solves it!

Problem 2.2:6
Find the general solution to the differential equations:

a.
Py dy
— 7 _92d —
gz lgr TV
b:
Py dy
bl et -0
dz? d:p+y
C:
2@_ @ 0
dz? dz

Problem 2.2:7

The drag force on an object falling through air can often to a good approx-
imation be taken to be proportional to the square of the speed. Solve the
differential equation

m— = mg — kv*

dt
with the initial condition v(0) = 0 (m, g and k are constants)
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Problem 2.2:8
a: Solve the differential equation

d*u )
ﬁ +u =sint
with initial conditions
u(O) =0 d—u =0
" dt

b: Describe qualitatively how the system behaves for large ¢.

2.3 Boundary value problems for ordinary differential
equations. Finite difference method

LAST TIME

e Reviewed first and second order differential equations that were

— linear

— homogeneous

— non-homogeneous
— separable

— Euler’s differential equation
e Defined Wronskian

e Solved a general inhomogeneous problem using Green’s functions.

TODAY I wish to distinguish between two different types of differential equa-
tion problems:

Initial value problem: The values of the dependent variable(s) and a suffi-
cient number of derivatives are specified for a single value of the independent
variable. In this type of problem the independent variable is commonly the
time, hence the term initial value problem.

Boundary value problem: Conditions on the solution are specified for two
or more values of the independent variable. Typically the values are specified
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on the boundary of a spatial region inside which the solution is sought. Hence
the term boundary value problem.

e [ want to start our discussion of boundary value problems by considering
a heat conduction example.

HEAT CONDUCTION IN THIN ROD

Heat is generated uniformly in the bulk (e.g. by an electric current).

There are heat losses the ends and at the cylindrical surface of the rod.
Wanted: steady state temperature along rod.

Heat loss

A
x
v

<— | A S Heat generated | ——>

A
—

N
Y

Heat loss

I will now make the simplifying assumption that the temperature depends
only on x and is constant over cross-sectional area A. Towards the end
of the lecture I will come back to this assumption and explore under what
conditions it is justified.

L = length of rod
A = cross sectional area
S = area of cylinder

0 < & < L = distance along rod
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Ty = ambient temperature

T(x) = temperature along rod

Q = bulk heat generated per unit volume and time
jz = heat per unit time and area flowing axially

js = heat per unit time and area flowing through outer cylindrical
surface

Cy = % bulk heat capacity of rod

A= T];STO = coefficient of heat loss

R = —

dqffdx = thermal conductivity

o
Heat balance: Q dx A=(-},(X) + j(x+dX)) A + jg(x) Sdx/L

dx

— X ————>«—>
J () A — > D — > J(x+dx) A

i5(x) Sdx/L

We assume that the heat current density (heat current per unit area) is
proportional to the temperature gradient

. dT
Ju(z) = —l{%
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so that

dj d*T
Jo(z +dz) — ju(x) = dxj—x = —dxﬁ;ﬁ
We divide the heat balance equation by QA dx and define

a:)\—s.; 6:i; u=T—-Tj
ALQ Q

to obtain the differential equation

d?u

with boundary condition w =0 for x =0 and = = L.

DIMENSION-LESS TEMPERATURE AND LENGTH
In (1) a has dimension 1/temperature 3 has dimension length?/temperature
We introduce the dimensionless effective ”length” z

(07
2 =4/

B

and the dimension-less effective temperature ¢
t=au
In these units the differential equation has no free parameters!

d*t

The dimensionless coordinate on the rod where the boundary condition ap-

plies is
Q ASL
=Ly =\

The boundary conditions are thus ¢ = 0 for 2 = 0 and 2z = a. The general
solution to (2) is
1+ 0162 + CQB_Z
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The boundary conditions ¢ = 0 at z = 0, z = a allow us to determine ¢; and
co to get

cosh(z — %)

t=1
cosh(3)

For a circular cross-section with radius R
S =27RL; A=nR?

2L
Rk

a =

The result is plotted below for different values of a

a=27

Conclusions:

e if a large = most of the heat loss flows through the sides of the cylinder.
The temperature is then approximately constant in the middle.

e if a small = most heat-loss occurs at the ends.
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RADIAL FLOW

We must now check the assumption that the temperature variation across a
radial cross section is indeed negligible! To this we look at the radial heat
balance at radius r

7r7"2Q = —2TTrK—

dr
and combine with the balance at R

TR*Q = 2nRA(T — Tp)

When studying the effect of radial flow we neglect the axial low. For reasons
of symmetry, this is completely justified in the middle of the rod where the
axial flow is zero . This is also the spot where the temperature difference
between the rod and the environment is the largest. So if the approximation
works there it will work everywhere!
As before: .
u="T-Ty, B=—=
0; B 0

Heat balance in steady state gives differential equation for radial flow

du
= _2p—
" ﬂdr
with general solution
L,
U = const — Er
while the condition at R gives
RQ
R)=—
u(R) = <
from which we find )
RQ R?2—r?
u = +
2\ 45

The temperature difference between the surface and axis of the cylinder is
thus in dimension-less units

aR? AR

ot =——F7=—

443 2K
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We are justified in neglecting the radial temperature profile if 6t is small
compared to the middle to end temperature difference calculated earlier. For
large values of the parameter a this difference is just unity (in dimensionless
units), and the we are allowed to put the temperature to be approximately
constant over the cross section A if

2k >> AR

For small values of the parameter a the condition is more complicated. We
are justified in neglecting the radial temperature dependence if

AR e ] 1

2K cosh 5

If this condition is not valid we need to treat both x and r as independent
variables and the boundary value problem will involve a partial differential
equation. We will be solving such problems later in the course.

FINITE DIFFERENCE METHOD

In the example discussed above we were able to find a solution analytically.
In practical problems, this is usually not possible, and we have to find an
approximate numerical solution. I have already noted that the numerical op-
tion of dsolve in Maple only works for initial value problems, not for bound-
ary value problems. A favorite numerical alternative is the finite difference
method. Let us assume that we wish to find an approximate solution for
a < x < b. The finite difference method seeks an approximate solution on a
discrete set of N +1 points (including the end points). The distance between
the points is

_b—a

N

The first and last points are called ezterior points, at these points the function
has to be determined by the boundary conditions. The remaining points are
the interior points where we wish to find a numerical solution.

A

We need to find an approximate form for the derivatives in terms of the

values of the unknown function at neighboring points. To do this we make

use of the Taylor expansions

n 1 d%u
2 dx?

x

du

u(z — A) = u(z) — A%

x
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N 1d%u
2 dx?

T

du
u(z + A) =u(z) + A%

T

Solving these equations for the derivatives gives

du| _u(z+A)—u(z—A)

dz x_ 2A
Pu|l ulz+A)+ulzr - A) - 2u(z)
dz?| A?

The finite difference method consists of replacing the derivatives occuring
in the differential equations by the finite difference expressions above. This
reduces the equations to a set of algebraic equations, which are easier to
solve.

It remains to consider the boundary conditions. These commonly come in
the following forms

e The value of the function u is specified at the boundary. Dirichlet
boundary condition.

e The derivative of u is specified at the boundary. Neumann boundary
condition.

e An equation relating the function w and its derivative is specified at
the boundary. We will encounter this type of boundary condition in
heat conduction problem later as convective boundary condition.

The Dirichlet boundary conditions is handled trivially by the finite difference
method. In the case of the two latter types of conditions we need to find finite
difference expressions for the derivatives which only values of w in regions
where the function inside the region where it is defined. Writing

du 1 d*u

A) = PN R
u(a+ A) =u(a) + dxa+2d$2a
u(a+2A)—u(a)+2Ad—u +2d2_u
N dz|, dx2a
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Solving for the derivative we find

du du(a + A) — 3u(a) — u(a + 24A)

dz|, 2A

Similarly at the other end

du 1 d?u
u(b—A)—u(b)—A%b—f‘E @b
du d*u
2A) = —2A — 2 —
u(b+ 2A) = u(a) iz, + a2,
du|  —4du(a—A) +3u(a) + u(a — 24)
dz b - 2A

Thus, a Neumann or convective boundary condition give rise to an additional
algebraic equation, that needs to be solved. This is not a serious problem,
but, as we shall see later in an example, sometimes this problem can be
gotten around by considerations of symmetry.

A work-sheet implementing the finite difference method in Maple can be
found at
http://www.physics.ubc.ca/“birger/n31216.mws (or .html).

SUMMARY

e We have analyzed a heat flow boundary value problem.

e To solve the problem using ordinary differential equations we made an
approximation about the nature of the flow.

e This lead to a differential equation for the steady state obtained by
writing down an equation for the heat balance.

e We started out with a lot of parameters, but showed that in appropriate
units only one parameter, the effective length a was needed to describe
the behavior.

e Conditions for the validity of our approximation.
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e Finally, we have described the finite difference method for solving bound-
ary value problems numerically.

PROBLEMS

Problem 2.3:1 Heat is produced uniformly at the rate H (energy per time
per volume) inside a sphere of radius ¢. The thermal conductivity of the
sphere is k. At the surface of the sphere heat loss per unit surface area to
the surroundings is

Au(e) = T)
Find the steady state temperature u(p) at radius p inside the sphere.

Problem 2.3:2

A large object has a spherical hole of radius ¢.The thermal conductivity of
the object is k. At the surface of the hole the temperature is 0. Far away
from the hole the temperature is 7. Find the steady state temperature at a
distance r > ¢ from the center of the hole.

Problem 2.3:3
In a heat conduction problem the steady state temperature T satisfies the
differential equation
d*Ts
dz?

where Ty and b are constants and the boundary conditions are

Ts(O) = Ts(a) =0

= h*(Ts — Ty — bx)

find Ts.

Problem 2.3:4

The rate of evaporation from a spherical drop (with constant density) is
proportional to its surface area. Define a parameter A to describe this pro-
portionality and find a formula for the radius of the drop as a function of
time.

Problem 2.3:5
You are called to the scene of a murder and charged with finding out when
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the victim died. The temperature of the corpse is found to be 25°C' and
one hour later it has dropped to 23.2°C'. The room is at 20°C'. Assume the
victim was at 37.5°C' when alive, and that the rate of cooling of the corpse
is proportional to the difference in temperature between the body and the
room. When did the victim die?

Problem 2.3:6
In a heat conduction problem with position dependent thermal conductivity,
the steady state is given by the differential equation

d% ((b— m)%) _

0<z<a
u(0) = 0; u(a) =T}

b, f, k are constants.
a: Find the steady state temperature u(zx).
b: Can the constant f be arbitrarily large?

Problem 2.3:7

a: Heat is produced inside a sphere of radius R at the rate H (H = energy per
unit time and volume). The surface is kept at the temperature Ty = 0, the
thermal conductivity is x. Find the steady state temperature distribution.
b: Answer the same question in the case of a cylinder of radius R length L.
The ends of the cylinder are thermally insulated from the surroundings.

Problem 2.3:8
When solving a heat conduction problem we may encounter the differential
equation

d*u(z)

dz

with boundary conditions © = 0 for = 0 and x = 1.If you try to solve this
equation e.g. using Maple you will find a very complicated solution involving
the so-called ” Airy” functions.
a: Instead, solve the problem numerically using the finite difference method

—zu(z) =z
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of lecture 6 using A = 0.005 for the distance between mesh points and plot
your result.

b: Estimate the likely error by comparing with the exact result or a numer-
ical calculation using A = 0.01.

Problem 2.3:9
The thermal conductivity may depend on the temperature. This gives rise to
a nonlinear differential equation for the steady state temperature. Consider
the following steady state differential equation

d dT

gz (ko+aT)—)=Q

Assume that for £ = 0 and x = L the temperature is kept at 7= 0

a:

Integrating of the differential equation gives rise to a quadratic equation for
T with two roots. Solve this equation Which root is appropriate if a > 07
a < 07 What is the solution when a = 07

b:

What goes wrong if « is too large and negative?

Problem 2.3:10
Solve the boundary value problem

d*t

with boundary conditionst =0,z =0andt=1,z=1

Problem 2.3:11
Solve the following boundary value problem using the finite difference method

dz;(;:) +z(l—z)u(z)=1, 0<z<1
w0)=0; M) = ()

Choose enough points so that you feel reasonably sure that your result is
accurate to 3 significant figures throughout the region 0 < =z < 1.
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Problem 2.3:12

Heat is produced uniformly at rate H per unit volume inside a spherical
"sun” of radius R. Heat escapes from the surface at the rate o7 per unit
area at the surface, where T is the surface temperature. Find the steady
state temperature distribution as a function or the radius r inside the sun.
The thermal conductivity of the sun is &.

3 Partial differential equations

3.1 Wave equation in one dimension. Sound waves.

In the last lecture we analyzed a heat flow boundary value problem. In this
problem we were only interested in the steady state. If we wish to study time-
dependent phenomena there would be more than one independent variable
(time and one or more spatial coordinates) and we would be dealing with
partial differential equations. Rather than continuing with the heat equation
we will start our discussion of partial differential equations by considering
waves.

TODAY

We wish to derive the wave equation

e We will use sound propagation in a gas such as air as an example.

e Sound waves are elastic waves that propagate in a gas liquid or solid.

In fluids long wavelength sound waves consist of an alternating pattern
of rarefaction and compression.

In a solid transverse waves can also propagate.

In ordinary sound the changes in pressure tend to be very small.

The intensity of a sound wave is often measured in decibels

P,
Iip = 2010%10(13 f)

The reference pressure is defined as

Py =2x 10~ %ar
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and P, is the root mean square pressure amplitude (1/4/2 of the peak excess
pressure). Even at the pain level of 120dB the peak excess pressure will be

2v/2 x 10 *bar

which is small compared to the ambient pressure ~ lbar.

The mechanism for a sound wave is that gas motion generates a change in the
density, which causes a change in pressure. There will then be an unbalanced
force which accelerates the gas and causes the cycle to repeat.

We write for the pressure and density

P =P, + P,
P = PaTt Pe

where the subscript a stands for average while e stands for excess.

The relationship between changes in density and pressure depends on the
properties of the medium in which the sound waves propagate. We will
assume that the processes are fast enough that they can be considered to
be adiabatic, i.e. without any heat transport. Since the amplitudes P, and
pe are small compared to the ambient conditions we assume that they are
proportional to each other
P, = Kpe
with

oP
K= ——

6'0 adiabatic

Let us consider a column of cross-section A.

When the air is at rest in equilibrium this column extends from = to z + dz.
We assume that a sound wave is traveling in the z-direction and that at
some instant the left end of the column is displaced an amount £(x,t) which
is small compared to the wavelength of the sound wave.

Conservation of mass yields

Apodr = A(pg + pe)(dE + dx)
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X X+dx X+& X+&+dx+d¢

or
pedr = —(pg + pe)dE =~ —pad§
since p, << pg, glving

~Y %
Pe = ~Pazy
The column is subject to a net force
P,
A[P(z +€,1) — Pz + €+ do + dé, t)] ~ _Awda:
x
causing an acceleration
0%¢ dpe 0%¢
Ada:paﬁ = —Ardx % A/{da:@pa

We thus obtain the wave equation

%€ _ 9%
o2 K@a:?

For an ideal gas assuming an adiabatic process
PV?7 = constant

with v = Cp/Cy or
P = Const.p”
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Differentiating we find

oP

oP B ﬁ B vkgT B YRT
dp N N N

adiabatic P m H

where m is the mass of a molecule and p the molecular weight. We finally

get
[vksT YRT
Cc = = E—
m H

It is interesting to compare the speed of sound with typical molecular speeds.
From the thermodynamics of ideal gases we have for the root mean square

(rms) speed
3kgT 3
Urms = =14/ =C
Vom o\

Since v ~ 1.4 for air we see that the rms speed and the sound speed are quite
comparable.

By substituting into the wave equation we see that it admits solutions in the
form of traveling waves ¢(z + ct), where ¢ = y/k We will next show that the
general solution to the wave equation can be written

E(z,t) = fi(x + ct) + folz — ct) where f; and f»

are arbitrary functions of the argument.
Before we proceed let us make a few general points:

e The same equation that we derived for sound waves also holds for a
vibrating string.
e The speed of the wave is then

c=+/T/p

where T is the tension and p is the mass/unit length of the string.
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e We will later generalize the wave equation to more than one dimension.
The two dimensional analog to the vibrating string is then the vibrating
membrane (section 5.4)

e Often one is not interested in the details of the solution but only in
knowing the frequencies which can be excited. We will need to develop
methods which provides this kind of information.

FINDING THE GENERAL SOLUTION

The general solution to ordinary differential equations involves arbitrary con-
stants, while for partial differential equations we will need arbitrary functions.
Similarly, to determine a particular solution to an ordinary differential equa-
tion we need specify the solution and/or it derivative on one or more points.
In the case of partial differential equations we need to specify the solution
along one or more curves. In order to see how this works let us begin with
the simple first order equation:

“or ot

Consider the families of curves

oc 0 _,

u = — ct = const.

v =1z + ct = condt.

we have
06  OudE vdE 06 0O
or  9rou  dxdv  ou  ow
o OudE Qv oE o ¢
ot otou  otow . ‘ou “ow

Substituting into the differential equation we find

o5

ov
The significance of this result is that the solution cannot depend on v, but
any dependence on u is allowed. The general solution is thus

E(z,t) = f(u) = fz —ct)
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where f is an arbitrary function. If we know the solution £(z,0) = f(z) at
t = 0 the solution for different times can then be obtained trivially.

Let us generalize the above result to the wave equation
rE 825
o2~ © a2

We again introduce the new coordinates

u=x-+ct

v=x—ct

The curves u = const and v = const. are commonly referred to as character-

1stics. We have
% du ¢ Lo dv g 9¢ L 0 0¢
dr  Ordu Oz dv  du = Ov

0§ _ 0udg  Ovdg 0¢ 0¢

ot otou  otow ou  ov
825 _ ou 025 N v 0?¢ Lo ov 825 L Ou ou 0?*¢
0r2  OrOu® Oz Qudv  Or Ov® | Oz dudv
o 0% ¢

G o ov? + 28u8@

0%¢ ouo*  Ov 0% BU 02%¢ 8u 02%¢

a2~ “otowz  “atouwon  “otoz ot oudv
325 5, 0% 2
8u2 te Er 2 Oudv

Collecting terms we find that in the new coordinate system the wave equation
takes on the form

%¢

4¢* =0
¢ oudv
Let us define 85
Blu0) = o
and rewrite the wave equation
¢
-
ov
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We can integrate this equation to give

df1(u)
= F(u) =
6= F(u)= T
where f1(u) is an arbitrary function and F(u) its derivative. Integrating once

more we find the desired result
&= [ ¢du= fi(w)+ fol0)

where fy is an other arbitrary function. Substituting for v and v gives the
desired result

§(z,t) = file +ct) + fole — ct)

Since two arbitrary functions are involved, to find a particular solution of the
wave equation we must specify two conditions. Typically, we will be dealing
with an initial value problem. Then both the initial displacement &(z, 0) and
the velocity f(x, 0) are required to find the solution for later times.

SUMMARY
We have

e derived the wave equation using propagation of sound as an example.

e showed that the equation admitted solutions in the form of traveling
waves.

e used the method of characteristics to find the general solution to the
wave equation.

PROBLEMS

Problem 3.1:1

a:

Find the solution to the wave equation
v 10%u
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satisfying
u(z,0) = a for |z| < a;u(z,0) = 0 otherwise
Ou(z,t)
ot
Hint: try solutions on the form
flx+ct)+g(z —ct)

b: Sketch the solutions for times

lt=o =0

f a a 2a

T2 ¢ ¢
or use the maple command ”animate” to visualize the time evolution of the
solution.

Problem 3.1:2
a: Find the solution to the wave equation

Pu 10 _
%—Ew,—oo<x<oo,t>0
satisfying
ou(x,t
u(z,0) = e~ ( )|t:0 = —2zce®

ot
b: Describe qualitatively the solutions found in a:.

Problem 3.1:3
a: Solve the wave equation

Ou L Ou <z < t>0
—=—=—, —0 <1<
or? 2 02’ ’
satisfying
u(z,0) = sin(z)
Ju(z,t)
—0=0
or =0

using D’Alembert’s solution.
b: Solve the same problem if
u(z,0) = sin(z)
ou(z,t)

ot

|t=0 = cos(z)
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3.2 Traveling and standing waves. Characteristic fre-
quencies. Reflection at boundaries

LAST TIME

e Derived the wave equation
0% _ ,0%¢
—_— =" —
ot? Ox?
using propagation of sound as an example.

e Argued that one could express the general solution of the wave equation
E(z,t) = filz — ct) + fa(z + ct)
in terms of traveling waves.

TODAY
We will present solutions to the wave equation in terms of standing waves
and indicate some important generalizations.

TRAVELING vs. STANDING WAVES

Standing waves can be expressed as linear combinations of traveling waves
and vice versa. Consider for example the case where the functions f; and f,
are sine and cosine waves respectively: We use the trigonometric identities

1
cos Acos B = i[cos(A + B) + cos(A — B)]
1
cos Asin B = i[sin(A + B) —sin(A — B)]
A standing wave
a cos(Azx) cos(cAt)

can thus be written as a superposition of traveling waves

%a[cos()\(x + ct)) 4 cos(A(z — ct))]
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Similarly since
1
B cos(Azx) sin(eAt) = iﬁ[sin()\(x + ct)) —sin(A(z — ct))]
we can write a standing wave as a superposition of traveling waves.

EXAMPLE:

An organ pipe is open in one end (z = 0) and closed at the other end (z = a)
At the closed end the amplitude £ has to be zero while at the open end
the excess pressure is zero. Since the excess pressure is proportional to the
derivative of the amplitude we have

9%

=0
33:93

=0

Let us try to find solutions to the wave equation as standing waves

§(z,t) = ¢(z)7(t)

Substitution gives

&2¢(z) &2 (t)

c*7(t) = ()

We employ the symbol 7 (prime) to indicate differentiation

¢"(z) _ 7'(t)

o(z)  1(t)

Since the left hand side is a function of x only, and the right hand side a
function of ¢ only, neither side can depend on x nor t. They must thus be
equal to a constant!

¢"(z) _ 7'(t)

= = const = ¢

¢(x)  cr(t)

The boundary conditions on ¢(x) are

¢'(0) =0; ¢(a)=0

If ¢; > 0, the solution to
" (z) —c1p(z) =0
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will be on the form
¢(z) = Asinh(z/c1) + B cosh(z+/c1)
The boundary condition at x = 0 requires
A=0

The condition at x = a is then impossible to satisfy. In order to remind
ourselves that ¢; < 0 we write

C1 = —)\2
The solution to the differential equation for ¢(z) is now
¢(z) = Asin(Az) + B cos(Az)

The boundary condition at x = 0 gives A = 0. The boundary condition at
x = a tells us that the allowed values of A are

2n+ 1)m
2a

The differential equation for the time dependent part is

Ap = , n = 1integer

'(t) + EX27(t) =0

with solution

T(t) = oy, cos(eAnt) + By sin(cAnt)]
Any solution of this form with arbitrary integer values of n thus solves the
boundary value problem and the differential equation. To proceed further we

need to know initial values of the £ and its derivatives. We will later learn
how to find the solution as a linear combination of the allowed solutions

E(z,t) = Y cos(Aaz)[an cos(cAnt) + By sin(cAyt)]
n=1
The method we have employed to find the standing wave solutions is called
separation of variables. We will employ this technique often in what follows.
In practice, one is often only interested in knowing the frequencies
_c2n+ )7
" 2a
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If we want a detailed solution we must determine «, and (3, from initial
conditions.

REFLECTION AT A BOUNDARY
It is instructive to interprete the boundary conditions at closed or open ends
in terms of traveling waves. To do this we write the solution to the wave
equation approaching a boundary at

z=0

as
fi(et + ) + folct — z)

to indicate a wave f; which moves to the left towards x = 0 and then is
reflected into a wave fy which moves towards positive x.

e If the boundary condition at = 0 is £(0,¢) = 0 we find
filet) = = fa(et)
that is the reflected wave has the opposite phase of the incoming wave.

e If we have open end boundary conditions

9¢(z, 1)
oz

|x:0 =0

we find
filet) = fo(ct)

which we interprete by saying that the two waves are in phase.

DAMPING

There will always be some damping of the sound wave due to dissipative ef-
fects. (Some of the kinetic energy associated with the organized wave motion
will be lost as heat).

To take this into account we go back to the derivation of the wave equation
(see section 3.1). In the expression

2
ad = Aczd:p—zpa (4)

Adzpa gy o7



< £ >
r-=--=
| |
Al [ A
| |
L -
X X+dx X+& X+&+dx+d¢

the left hand side represented mass times acceleration, while the right hand
side represented a restoring force.

It is natural to include the effect of damping by adding a term

3
—A —
dzp.k v

proportional to the velocity of the volume element opposing the motion, i.e.
the constant k should be positive.

The modified wave equation thus becomes:

2e  oe 0%
a2 TFe T o

To get a slightly different situation from what we had before let us assume
that both ends are closed so that the boundary conditions are

£(0,t) = &(a,t) =0

Again we can attempt solve this problem by looking for standing wave solu-
tions. Put

§(z, 1) = B()E(?)
We find

1
¢(x)

¢ 1 d*r dr
da? ) a T Rag) = o= eons
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As before the constant ¢; must be negative and we put ¢; = —\? and have
9"+ Xp=0
with general solution
¢ = Asin(Az) + B cos(Az)

This time the boundary conditions require that B = 0 and the eigenvalues
are

L
a
The differential equation for 7 is now
d>r dr
—— G+ k—+ AN =0
pTE) + It + AT

This is a differential equation with constant coefficients and it can be solved
by trying solutions on the form

7(t) oc 7
Substituting into the differential equation gives the characteristic equation
YV +ky+ A =0

If the damping is not too large this equation has two complex conjugate

solutions
2

k k

The general solution to the differential equation for 7 is then

7(t) = e 2 sin(tM) +5cos(tm)]

We will later show how to express the solution to the partial differential
equations as a Fourier series

00 2 2
E(z,t) = 3 sin(\,z)e /2, sin(ty/ \2c2 — kz) + B cos(ty AZc? — kz)]
n=1
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where the coefficients «, and (3, must be determined from the initial condi-
tions.

SOURCE TERM
As our final example let us consider the inhomogeneous wave equation

0% ,0%¢ 0

2 S k——f( ) cos(wt)
i.e there is a source of sound with spatial extent f(z) generating waves at
the frequency w. Again, we will find that this problem can be solved using

the method of Fourier series expansion.

SUMMARY
We have

e solved a typical boundary value problem for the one-dimensional wave
equation in terms of standing waves

e showed how the standing wave solution could be re-expressed in terms
of traveling waves

e analyzed the open and closed end boundary condition for traveling
waves in terms of reflected waves

— at a closed end the reflected wave is phase shifted by =

— at an open end the reflected wave is in phase with the incoming
wave

e generalized the wave equation to include the effect of damping

e also generalized the equation to include the effect of a source term.
PROBLEMS

Problem 3.2:1
a: A triangular sound pulse

0 for r+ct <0

T+ ct O<zxz+ect<bd
S@tet) =9\ o5yt b<atoct<2b

0 2b < x+ct
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is traveling down a tube. As the pulse reaches an open end it is reflected and
returns in the direction of positive x. Sketch the shape of the pulse for times
t =b/c, 2b/c;4b/c after the front of the pulse has reached the open end.

b: Solve the same problem if the end is closed.

Problem 3.2:2
Solve Problem 3.1:3 using the method of separation of variables.

Problem 3.2:3
a: Find the general solution to the fourth order differential equation

d*u

4 2
a"— —wu=0

dzt
b: The transverse vibrations of a thick rod can be shown to satisfy the fourth
order partial differential equation

O 0Pu
“ont o
Find solutions on the separated variable form for the vibrations.
c: If the ends are clamped down both u and du/dz vanish. Find an equation
that the frequencies of vibration must satisfy for a rod of length L with both
ends clamped down.

=0

Problem 3.2:4
a:
For which values of \ will

2
d—ﬁ + 2% +X¢=0
have solutions satisfying
¢(0) = ¢(m) =0
Sketch the eigenfunctions corresponding to the three lowest eigenvalues.

b:
Find the three lowest eigenvalues and sketch the eigenfunctions of the prob-
lem P

—¢+)\2¢:0; 0<zr<a

dz?
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3.3 The potential equation

LAST LECTURES
Concluded discussion of wave equation.

TODAY
Wish to move on to the potential equation (also called the Laplace equation).
In two dimension this equation can be written

u(z,y) N u(z,y)

ox? dy? =0

while in three dimensions we write

u(z,y, z) N u(z,y, z) N u(z,y, z)

=0
0x? 0y? 022

Either equation may be written
Vu =0
and we will have to learn how to express the Laplacian

0? 0? 0?
Vie — 4 ==+ =
ox?  0y*> 022
in different ways such as in polar, cylindrical or spherical coordinates.

ORIGIN OF LAPLACE EQUATION

We will frequently need to be able to solve the Laplace equation as a stepping-
stone to the solution to a more complicated problem:

E.g. in electrostatics one finds that in a region of space in which there are
no charges the electrostatic potential satisfies

V-E=0

where .
E=-VV
giving

V-VV=VV=0
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Of course, electrostatics would be uninteresting if there weren’t any charges
around. However, to solve Poisson’s equation

vy =~

€o
one needs to be able to solve the homogenous equation.
FUNCTIONS OF A COMPLEX VARIABLE

The 2-D Laplace equation plays a special role in the theory of complex vari-
ables. Suppose V (z) is a differentiable function of a complex variable

z=x 41y
then
ov._dv
or  dz
ov _ v
oy  dz
and
PV _ v
or2  dz2
PV _ v
oy dz?
Hence
o’V 0*V
— 4+ —=—==0
ox?  0y?

In the case of the wave equation in one dimension we argued that the general
solution could be written fi(z — ct) + f2(z + ct), as a of linear combinations
of traveling waves. Similarly the general solution to Laplace equation in 2
dimensions can be written

filz +iy) + fo(x —dy) = fi(2) + f2(27)

where z* is the complex conjugate (see section (2.1) of z = x4+ iy and f; and
f2 can be differentiated twice.

FINITE DIFFERENCES
To get a feeling for what the Laplace equation ”does” let us attempt to solve
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it approximately by the method of finite differences.
We showed in 2.3 that we can use the values of a function on three neighboring
points

r— Az, x+ A

and the method of Taylor expansion

A2
fla—2) % f(@) = A + 5 f"
2

A
flz+A)~ f(x)+Af'+7f"

to get approximate expressions for the derivatives
, 1
f'=sx(fa+8) - fa—a))
" ]'
f'=g(flz+8)+flz—-A4)-2f(z))

Similarly in two dimensions

o f  O°f

~

L 4~
ox? = 0y?

U@+, )+ (1= B, ) =2 (@) 4 (12, A 1, y= )26 (2)

Hence,we can find an approximate solution to the Laplace equation by aver-
aging over the surrounding points.

This result can be used to solve Laplace equation numerically just as we did
in the boundary value problem in (2.3).

EXAMPLE
Suppose we want to find the solution to the Laplace equation

Vif=0

in an L-shaped region.
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To specify the problem we assume the function is known at the boundary
Let us crudely discretize the problem

1

2 3 4

5 6 7 8

9 10 11 12 13
14 15 16

Here
1,2,4,5,7,8,9,13,14,15,16

are exterior points where the function is known.
3,6,10,11,12

are interior points where we wish to find f.

The approximate solution is then obtained by solving the set of equations

fa= i(f1+f2+f4+f6)

fo= 3+ fo+ fr + o)
fro= 3o+ fot fu + Fa)
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fuin = i(f? + fis + fio + fi2)

fi2 = i(fs + fi1 + fis + fi6)

Of course, if one wishes to find an accurate solution it is necessary to use a
finer mesh. The generalization to three dimensions is

92 2 2
;L0 P
ox?  0y? 022

= E(f(a:—i—A,y,z)—i—f(x,y+A,z)+f(a:,y,z+A)

+fe = Ay, 2) + flz,y— A, 2) + flz,y,2 — A) — 6f(2))
An important consequence of the averaging property of solutions to the

Laplace equations is that maxzima and minima only occurs at boundaries,
never in interior regions.

LAPLACE EQUATION IN DIFFERENT COORDINATE SYSTEMS
When solving boundary value problems in more than one dimension it is
often necessary to use other coordinate systems than the Cartesian. It is then
important to be able to express the Laplacian operator in these coordinate
systems. We first consider

POLAR COORDINATES

x =rcosf
y =rsinf
Laplace’s equation in this coordinate system can be shown to be:

0*u(r, 6) N 1 0u(r, ) N 1 %u(r,0)

2 _
Viu(r,0) = or? r Or r2 062

PROOF: Let us for now apply the convention that subscript implies partial

differentiation e.g.
ou

Up = —

or
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Applying the chain rule we find
Up = UpTy + erx

Uge = (ur)xrw + UpTyy + (Uo)acex + gl
(ur)wrw = urr(rw)z + urOerx

(u0)x9x — u0rra:9ac + u09(9x)2

N S

1Y

We have

6 = tan

and
T

Collecting terms
2 2 2
T Y 2xy Y 2zy
Upr = ﬁuw + r—4U09 — Furo + ﬁur + 7110
Similarly we can show that

y? z? 2z z? 2y

Yy
Uyy = S Upr + U + —5Upg + —Z U — —3Ug
vy r2 ré r3 r3 rd

Again, collecting terms

0*u(r, 6) N 10u(r,9) N 1 %u(r,0)
or? r  Or r2 062

2
VU = Uy + Uyy =

which is the desired result!

66



CYLINDRICAL COORDINATES
It is easy to generalize the result for polar coordinates to cylindrical coordi-
nates

T = pcos ¢

y = psing

=2z

0%u(p,¢,2) | 10u(p,¢,2)
2 o )y ¥ - y ¥
V U(p,gb,z)— 8[)2 p 0,0

10%u(p,6,2) | F*u(p,9,2)
2 D2 022

_|_

SPHERICAL COORDINATES
Finally we give without proof the result for Laplace’s equation in spherical
coordinates:

1.0, ,0u(rd, )
r2 [67" (r or )
1 9,. 0u(rb, o) 1 0%u(r,0,d)
+ sin 6 90 (sin 6 00 )+ sin?f  0¢? ]
(You will find proofs in Riley et al. or Arfken and Weber).

Viu(r,0,2) =
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SUMMARY
We have

e started our discussion of the Laplace equation

discussed some typical situation where it arises

demonstrated a connection with the theory of complex variables

discussed numerical solutions using finite differences

written down expressions for the Laplacian in different coordinate sys-
tems.

PROBLEMS

Problem 3.3:1
Solve Laplace equation
Pu  Pu
O0x? + oy?
in an L—shaped region (see figure)
Use the following constants:

0



)
«—ao—>

A

A
Q
\ 4

Use a coordinate system where the origin is the lower left hand corner where
sides A and B meet. The x—axis is along A and the y—axis along B. Along
the side A the boundary condition is

0
% _ 0
9y
along the side B we have
u(0,y) =y
along F we have
u(z,b) =b+ =z

while along F'
ula—cy)=a—c+b

and along C'
u(z,d)=z+b

and finally along D
u(a,y) =a+b
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Use the finite difference method to find u inside the L—shaped region using
a mesh of size 1 x 1. and plot the result.

Problem 3.3:2

Solve the same problem as the one above except
Pu, Pu_
ox?  0y?

The differential equation corresponds to the Poisson equation for the elec-

trostatic potential with a uniform negative charge distribution. Plot your
result.

1

3.4 Heat equation in one dimension. Separation of
variables.

LAST TIME
Discussed the Laplace equation.

Today we wish to derive time dependent heat conduction equation and dis-
cuss some properties of solutions to that equation.

We have earlier (section 2.3) discussed the steady state problem.

DERIVATION OF TIME DEPENDENT EQUATION

Heat loss
“«— X —> ﬁ
<—| A S Heat generated | — >
< L >

@ Heat loss

The temperature now depends on both z and ¢, but is still assumed constant
over cross-sectional area A!
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L = length of rod; S = area of cylinder

To = ambient temperature; T'(z) = temperature along rod
Q =heat generated per unit volume and time

jr = axial heat flow per unit time and area

js = radial heat flow per unit time and area

Cy = % bulk heat capacity of rod

A= T{STO = coeflicient of heat loss
k= — dqu —— = thermal conductivity
dx

—_— X —><—>
JOOA —> (D > jy(x+dx) A

The axial flow of heat into the element dz is
0z
—Aje(z +dx) + Aj.(z) = —Ad:z:ai
i

2
T )
= Adx/{g? = AdzQ;,
The radial heat flow out of the element is
L

The difference causes a rise in temperature per unit time

T . . oT
/{w +Q - Qout = CVE

If we neglect radial losses and heat generation we get the heat equation.

0*T oT
"oz = o

= Adeout

BOUNDARY AND INITIAL CONDITIONS
Let us define k = k/Cy. The heat equation then becomes
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LT oT
or2 ot

On physical grounds we expect an unique solution if we specify

e Initial temperature distribution.

e What happens at the boundaries.

Some common boundary conditions:
e Temperature held fixed at ends — Dirichlet boundaries.
e Heat flow constant at ends — Neumann boundaries.

e Mixed boundary conditions (Dirichlet at one end Neumann at the
other).

e Heat flow at ends governed by temperature difference with surroundings
— convective boundaries.

If there is heat generated, or radial heat transfer, add an inhomogeneous
term to differential equation.

There are a number of important situations which are governed by equations
of simular structure (linear equations containing second spatial derivatives
together first order time derivatives) for example

e The Wave function of a particle in quantum mechanics is governed by
the Schrodinger equation.

e The concentration of particles subject to random collisions with other
particles is governed by diffusion equation.

e The probability distribution for the position of a particle subject to a
random force can be described by the Fokker-Planck equation.
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We can approach the problem of solving the heat equation (or related prob-
lems) by finite element methods. The approach is somewhat similar to the
ones used for boundary value ordinary differential equations (section 2.3)
and in potential problems (section 3.3). However, because of problems with
numerical stability, the heat equation is more difficult to handle this way,
and we will not pursue this method here. For a discussion see Numerical
Recipes[9]. Today we will approach the problem by separating the variables
as in (section 3.2).

PLAN OF ATTACK

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Solve steady state problem Ts(z).

Redefine problems in terms of

u(z,t) =T — Ts(x)

Try to find solutions to the differential equations in which the variables
are separated (as we did for the standing wave solutions to the wave
equation):

u(z,t) = 7(t)p(x)

We will find that this leads to ordinary differential equations with a
separation of variable constant.

Determine the separation of variable constant by considering the bound-
ary value conditions at the ends. This will lead to an expression for
the solution, typically in the form of a Fourier series.

Determine the coefficients of the series from the initial conditions.

EXAMPLE: FIXED END TEMPERATURES

We wish to solve the heat conduction problem

#1 o
or2 ot
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with the temperature held fixed at
T=T, forx=0
T=T forx=a
Initially (¢ = 0) the temperature distribution is
T(z,0) = f(z)

where f(x) is some known function.

Wanted:
T(x,t) fort>0

THE STEADY STATE

The steady state temperature T's is a function of x alone and hence satisfies

d*T,
k

dz? =0

The general solution to this equation is
Ts(.’IT) = 01 + C2IL‘

If
TS(O) = Tg, Ts(a) = Tl

we can solve for Cy and C] to get
Ts() = To + (T — To)~
Let us define the new temperature variable
u(z,t) =T(x,t) — Ts(z)
with initial condition
u(z,0) = h(z) = f(z) — Ts(z)
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The function u(z, t) satisfies the same partial differential equations as T'(x, t)

kazu(w,t) _ Ou
or2 Ot

but the boundary conditions are now homogeneous:
u(0,t) = u(a,t) =0 forallt

As we shall see homogeneous boundary conditions makes the problem much
easier to solve!

SEPARATION OF VARIABLES
The next step is to try to find solutions of the on the form

u(z,t) = 7(t)p(x)

where 7(t) depends on t only
#(z) depends on z only
Substitute into the partial differential equation:

¢ 1dr(t)
t)— = ——
We divide both sides by ¢ to find
ldz_(j) = id—T = ¢ = const
odr?  krdt

The first term can only depend on x, while the second term can only depend
on t. Hence, their value must be independent of both x and t.
We solve the temporal equation to obtain

7(t) = co exp(cikt)

Solutions that grow exponentially in time are not acceptable on physical
grounds. The constant ¢; must therefore be negative. To remind us of this
put

Cy = —)\2
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The differential equation for ¢ thus becomes

d
2T 4N\ =
122 +AX9p=0

with general solution
dr(x) = asin Az + [ cos Az (5)

In the case of fixed temperature boundary conditions we require that ¢ =0
at both ends, and put § = 0. We are interested in solutions

. nmw . .
On =sin \,z; A, = R n = positive integer

and we see that the eigenfunctions ¢,(z) with eigenvalues A, can be used to
build up solutions of the form

u(z,t) i b () exp(—A2kt)

using the initial condition, where the coefficients «,, remains to be deter-
mined. This is an example of a Fourier series expansion, which is our next
major topic.

© n2m3t nwT
T(z,t)=Ts+ > anexp (k 5— | sin
o a a

e We note that the time dependent solution decays exponentially towards
the steady state solution.

e The higher order terms in Fourier expansion decay the fastest.
e Non-steady temperature distributions smoothen out before they decay!

We still have to solve the problem of finding the coefficients a,,!

PROBLEMS
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Problem 3.4:1
Consider the conduction problem for 0 < z < a,t >0, S5 >0

Pu_1on
or2 kot
ou(zx,t) B Ju(z,t) B B
x|, =0, o | =S, u(z,0)=0

a: Give a physical interpretation of the problem. Will it approach a steady
state?
b:
Show that g
t) = —(z* + 2kt
v(z,t) = o (" + 2kt)

satisfies the heat equations and boundary conditions (but not the initial
condition).

c:

In order t satisfy the initial condition try a solution

u(z,t) = v(z, t) + w(z,t)

Find the differential equation, boundary and initial conditions that w(z, t)
must satisfy. Will w(z,t) approach a steady state. What is it?

Problem 3.4:2
Show that the four "heat polynomials”

up =1, up = &, uy = 2* + 2kt, us = 2* + 6kat

are solutions to the heat equation. Find a linear combination of them that
satisfies the boundary conditions u(0,t) = 0, u(a,t) = t.

Problem 3.4:3
In which of the following cases can solutions be found by the method of
separation of variables?

0%u 0%u
ERETI ©)
0*u 0%u
a2 T t2—6t2 =0 (7)
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u  0u

o2t om ¢ ®)
?u  Pu
@ + 0—y2 =€ +e Y (9)

In cases where the variables don’t separate directly, transform the equations
so that product solutions can be found. You don’t need to solve the resulting
ordinary differential equations.

3.5 Sturm-Liouville Problem
LAST TIME

e We formally solved a time dependent heat conduction problem with
fized end temperatures (Dirichlet boundary conditions).

e The first step in the method was to solve the steady state problem.
e The non-steady solution was expanded as a series.

Before we get into the details of Fourier series. we today consider more
general boundary conditions!

EXAMPLE INSULATED BAR
The boundary conditions are now
0T (z,t)

Oox

(no heat flow through the ends.)
The initial condition is

=0; forz=0;, r=a

T(z,0) = f(z)

where f(z) is some known function. The boundary condition at the ends is
now homogeneous. We shall see this means that there is no need to subtract a
steady state solution. (It is intuitively obvious that the steady state solution
is a uniform temperature equal to the average initial temperature throughout
the bar.) As before we look for solutions

T(z,t) = m(t)p(x)
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where 7(t) depends on t only
#(z) depends on z only
Substitute into the partial differential equation: and divide both sides by ¢7

to find

1d?¢  1ldr

5ﬁ ~ e dt c1 = const
As before the first expression can only depend on z, while the second only
depends on t, hence both must be constant. Solutions to the temporal equa-
tion that grow exponentially in time are not acceptable on physical grounds.

The constant ¢; must therefore be negative and again we put
Cy = —)\2

We find for 7(t)
7(t) = const.e ' *

The differential equation for ¢ is

d2
2T 4N\ =
dz? A
with general solution
dr(x) = asin Az + [ cos Az (10)
If we require that
d
—¢:0, forz=0; x=a
dx

the boundary conditions are automatically satisfied. We pick from the gen-
eral solution (10) those with
nm
a=0, \, = —,n =0 or a positive integer
a

The solution T'(x,t) is now
T(z,t) = Bnexp(—A2kt) cos(nrz/a)
n=0

where the coefficients (5, must be determined by making a cosine expansion
of the initial condition (something I haven'’t yet told you how to do). Note
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that since cos(0) = 1 # 0 the sum now extends from 0 — oco. Negative
values are uninteresting since cos(z) = cos(—z) The n = 0 term in the sum
represents the steady state solution, while the n # 0 terms decay with time.

EIGENFUNCTIONS AND EIGENVALUES
Let us next consider the more general problem

d2
—— 4 XNp=0, l<z<r

dz?
where the eigenfunctions are required to satisfy the boundary conditions
dé(x)
[)—"> e=1 =0

ap(l) — by Is =

do(x)
r l _br T=r —
adll) — b, =0

and we wish to find the eigenvalues A\, for which solutions exist.

ORTHOGONALITY OF EIGENFUNCTIONS
An extremely important general result is that the eigenfunctions that corre-
spond to different eigenvalues are orthogonal. By this we mean that

‘AT¢n@ﬁ¢mcwdx::0,ifAnyéAm

To prove this, first note that the left boundary conditions require that
al¢n(l) - bl(f);z(l) =0

apm(l) — bidr, (1) =0 (11)
where we use the notation
- dx

From (11) we see that the determinant

Sm(l) —¢m(l)
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Hence
~ (1)@ (1) + P () (1) =0
Similarly at the other end

_qsn(r)qzs;n(r) + gbm(r)qb;z(r) =0
From the differential equation we have
¢Il — _)\2 ¢

Multiplying the first equation above by ¢, and the second by ¢,, and inte-
grating over = from [ to r we find

02 = 2) [ dagu(@)gm(@) = [ do(6a(a)"dm(@) = 6m(2)"Sn(z)
Integrating the last integral by parts and assuming that
M- X\2 0
we find
(2, = X2) [ dedu(e)om(@) = [=0n(@)(z) + om (@) (2)][f =0
g.e.d.

THE STURM LIOUVILLE PROBLEM
We shall later encounter boundary value problems of the same type as before

dé(z)
[y —bj——|s=1 =
ap(l) — b I o=t = 0
dé(z)
r —bp—"|o=r = 12
wd(r) b, =0 (12
but where the differential equation is the more complicated
d d¢o 9
T (s(2)50) — a()g(w) + Nop(a)g
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where s(x), g(x), p(z) are known functions. The problem of finding the eigen-
functions and eigenvalues in this case is called the Sturm-Liouuville problem.
We will show in (section 4.5): that in the general case the orthogonality
relations are a bit more complicated

/lr d$p($)¢n($)¢m($) =0, )\i 7£ )‘fn

We will encounter many examples later on, especially when we move to more
than one dimension.

SUMMARY

e [llustrated the use of method of separation of variables by considering
heat equation. with fixed temperature and with insulated end bound-
ary conditions.

e Formulated the Sturm Liouville problem.
e Discussed eigenfunctions and eigenvalues.

e Demonstrated orthogonality relations for the eigen-functions.

PROBLEMS

Problem 3.5:1
Find the eigenvalues and sketch the first three eigenfunctions of the problem

"+ XNp=0,0<z<a

b:
¢(0) — ¢'(0) = 0; ¢(a) + ¢'(a) = 0
In case b: you will end up with a transcendental equation which can only be

solved numerically. To do this choose a=1. If you wish to solve the equation
with Maple the command

fsolve(equation, z = lowerlimit..upperlimit)
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searches for a numerical solution of the equation for x in the specified interval.
It only finds one solution. If there are several solutions, you must narrow the
search interval and repeat the procedure to find them all.

Problem 3.5:2
The concentration ¢ of a certain chemical in a column of water as a function
of height z and time is given by the diffusion equation

&c _ dc
9022 ot
where D is the diffusivity. The boundary conditions are

%:0, forz=0, z=h
0z

where h is the height of the water column. The initial concentration is

c(z) = ¢ sinz(ﬂ—z

2h)

a: Find the steady state concentration. b: Find the concentration as a
function of height and time. c: Find the time taken for the concentration at
any point to reach the mean of the initial and steady state values.

The trigonometric identity

1
sin®(z) = 5(1 — cos(2z))
may prove handy.

Problem 3.5:3
a: Show that the function

é(z,y) = sin(mzx) sin(27y) — sin(27x) sin(7y)
are solutions to the differential equation

2 o

7 o
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with the boundary condition, for a certain value of A
»p=0
on the boundary of the triangle 7" bounded by the lines
y=0,y=2z, x=1

What is the value of A(eigenvalue) associated with this solution?
b: Try to guess some other solutions with other eigenvalues .

4 Fourier methods

4.1 Fourier sine and cosine series

LAST TIMES

e Attacked a one dimensional heat conduction problem by applying the
method of separation of variables.

e Found ordinary differential equation whose solutions were trigonomet-
ric functions. The general solution could then be expressed in terms of
trigonometric series or Fourier series.

e Formulated the Sturm-Liouville problem and proved some orthogonal-
ity relationships.

TODAY
e Start discussing Fourier methods

e Technique named after Jean Baptiste Fourier (1768-1830) who used
them to solve heat conduction problems.

e Many other applications in

— optics
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— image analysis

— electrical networks
— spectral analysis
— crystallography

— probability theory.

e Three different approaches

— Fourier series = used for periodic functions and functions with
finite range.

— Discrete Fourier series = used for functions defined on a set of
points.

— Fourier integral = used for functions defined for —co < z < o0,
or 0 <z < oo.

PERIODIC FUNCTIONS
A function f(z) is periodic with period a if

f(z) = f(z +a)
Such a function has infinitely many periods

fle)=f(x+a)=f(z+2a)=f(z+3a)="--

f(x)

AN ANIYAY
U
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The trigonometric functions sin (222 2me

), cos(*I%) are periodic with period a.
If n is integer sin(22%2), cos(222) are also periodic with period a

a doesn’t have to be the shortest period!

ORTHOGONALITY
Let us define the Kronecker-delta as

5nm:{ 0 for m#m

1 for n=m

where n and m are integers.
We next show that

a . 2nmx
/ dz sin =0
0 a

a 2nmw
/ dx cos = adno
0 a

a . 2nmx . 2mrnx a
dx sin sin = —0nm
0 a a 2

a . 2nmx 2mrx
dz sin cos =0
0 a a

a 2nmx 2mrxr a
dx cos cos = —0nm
0 a a 2

The above set of equations are commonly referred to as orthogonality rela-
tions. Since these functions occur as solutions to Sturm-Liouville problems
(section 3.5) we expect such relationships. However, since they will prove so

important in what follows we will prove them by explicit integration.

To prove these relation first note that for any integer n

cos(2mn) = 1; sin(27n) =0

86



For n = 0 we have trivially

a 2
/ dz sin e _ 0
0 a

a 2nwx
dz cos =aq
0 a

For n #£0

a 2nmx a
dzx si = —(1— 2 =0
/0 T sin . 27rn( cos(2mn))

a 2
/ dx cos e _ 9 (sin(27n) —0) =0
0 a 2m™n

The last three integrals can easily be proved using the trigonometric identities

1
sin Asin B = E[cos(A — B) — cos(A + B)]

1

cos Acos B = E[COS(A — B) + cos(A+ B)]
1

sin Acos B = E[sin(A — B) +sin(A + B)]

FOURIER SERIES

An arbitrary function f(z) defined for 0 < x < a can be expressed as:

2nmx . 2nmzx
f(z) = a0+ > [ancos ” + B sin ” ]

where
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1 re
= — d
ap a/o f(z)dz
2 ra
Qay = —/ f(z) cos "2 g
a o
2 (o 2
Bn = —/ f(z)sin "2 G
alo

The equations for the coefficients «,, 3, follow from the orthogonality condi-
tions. The restrictions on the function f(z) for the series to converge to the
function are not severe and will be discussed more in (section 4.3). The main
restriction is that the function should be bounded and piecewise continuous
i.e. have only a finite number of discontinuities. At discontinuities the series
converges conditionally to the average value

S +0)+ fz—0))

we will come back later to the question of completeness of the expansion
when discussing the Dirac d—function (section 6.1).

For examples of evaluation of Fourier coefficients see the maple worksheet at
http://www.physics.ubc.ca/ " birger/p31216.html.

PERIODIC EXTENSION

Suppose we define a function f(z) for the range
0<z<a

and compute the coefficients of the Fourier series

o0

f(z) =ag+ > [ancos

n=1

2nmx . 2nmx
+ By sin

]
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What happens if we substitute values for x outside the range?

Since sin(2n7/a) and cos(2nm/a) are periodic function with period a the
Fourier series will evaluate to the periodic extension

f(x+na) = f(z) for n==41,4+2---
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EXAMPLE: Sawtooth pulse periodic extension
f(x)=x, O<x<1, a=1
1

ap = ZJf(x) cos(2mx)dx=0

N
—_———— =
N
—_———— =
N
—_————— =

0

1
ag= J’ f(x)dx=1/2
1

B = ZJf(x) sin(2mx)dx= ==

L Series up to n=2 |
X
Series up to n=10
1
X
1 2 3

EVEN EXTENSION: Cosine series

The periodic extension is not the only way to extend the function f(x) beyond
the range

O<zr<a
An alternative is

f(z) = f(—=z); f(z+£2a)=f(x)

The period is now 2a instead of a. Since

sin(—z) = —sin(z); cos(—z) = cos(z)
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all the sine terms in the Fourier series expansion are zero. We find

o0
f(z) =ap+ Zancos@
a

n=1
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EXAMPLE: Sawtooth pulse even extension
f(x)=x, 0<x<1, a=1

. 0 1 X
ag= { f(x)dx=1/2
. 0, n=even
ap = [ f(x) cos(Tnx)dx= 4 eodd
n
1 Series up to n=3
0 1 _ X
Series up to n=10
1
X

ODD EXTENSION: Sine series

92



EXAMPLE: Sawtooth pulse, odd extension
f(x)=x, 0<x<1, a=1

1 a .
. -
- | -
. | .
- -
-’ I s
- -
. ! -
g . . X

I f/ . e 2
Bn = _[ (x) sin(rmx)dx= —

Series up to n=3

IANEANAY
ValAVaaRY

Series up to n=10

!
O

We now extend the definition of f(z)
defined on 0 < z < 1 as follows

f(z) = —f(—z); f(z+2a)=f()

Since the function is odd all the cosine terms in the Fourier series will vanish
and we have
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f(z) = Bnsin =
n=1 a
2 a
Bn = —/ f(z)sin Lk
a Jo a
SUMMARY
We have

e defined the Fourier series of a function f(z) defined in a finite interval,
and illustrated by some examples.

e defined the periodic, even and odd periodic extensions.

e derived formulas for the coefficients of the series in terms of integrals
over trigonometric functions.

PROBLEMS

Problem 4.1:1
The function f(z) is defined for 0 < z, 7 as

1 ™
59 0<.’IT<§
I, $<z<m

-

Find the Fourier series and plot sum of terms to order n = 10 for the
a: periodic extension (sin/cos series).
b: even periodic extension.

c: odd periodic extension.

Problem 4.1:2 Consider the function

f(z) = |sin(z)|, —oo < z < o0
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a: What is the period?
b: Expand the function in a Fourier series and plot a comparison between
f(z) and the series up to n = 5.

Problem 4.1:3 Consider the function
flz)=2z(1—2),0<z<1

a: Find the Fourier series for the periodic extension.

b: Find the Fourier series for the even periodic extension.

c: Find the Fourier series for the odd periodic extension.

d: Plot the results after summing to terms to order n=>5 in the expansion
for the three cases above.

Problem 4.1:4 The ends of a thin bar is kept at 7" = 0. The temperature
inside satisfies the differential equation

kaZT T
ox? 0Ot
The boundary conditions are

7(0,) = T(a,t) = 0

It was shown in class that the solution can be expressed as a Fourier series
o0
T(z,t) =Y Bnexp(—n’r’kt/a”) sin(nmz/a)
n=0

Assume that the initial temperature distribution is

T(z,0) = Tox(az— x)

a

Plot T/T, in the middle of the bar as a function of kt/a®. Alternatively
use the Maple ”animation” command to visualize the time evolution of the
system.

Problem 4.1:5 Given the function
f(z) =sin(z) 4 cos(z); 0 <z <
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Find the function g(z) in the range —m < z < 0 that constitutes the

a: periodic extension of f(z).

b: the odd periodic extension of f(z).

c: the even periodic extension of f(z). c: Is the derivative of a periodic
function periodic? Is the integral of a periodic function periodic?

Problem 4.1:6

a:

Two identical metal bars are each of length a. Initially one is at temperature
0°C' while the other is at temperature 100°C. They are joined together end to
end and the assembly thermally isolated. Assume the temperature satisfies
the heat equation

kaZT T
ox2 Ot
with boundary conditions
aT
ﬂ:o, r=—a andr=a
Oox

Find in the form of a Fourier series the temperature T'(z,t) at later times ¢.
b:
Plot the solution for z = —a as a function of time (in units of a?/k).

Problem 4.1:7
Consider the functions

f(z) = sin(x) + cos(x)

defined only in the restricted range 0 < z < m and

sin(z) + cos(z) for 2nr <z < (2n+ )7
g(x) = { —sin(z) + cos(x) for Cn+1l)r<z<(2n+2)r
n=-—oo,---—2,—-1,0,1,2,---00

defined for all real x.
a: Which of the following statements are true

1. g(x) is the periodic extension of f(z).

2. g(z) is the odd periodic extension of f(z).
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3. g(z) is the even periodic extension of f(z).

4. none of the above.
Justify your answer. We make a Fourier expansion of the function g(z)

g + i(an cos(nz) + B, sin(nzx)))

n=1

g(z) =

]_ 2
Qo = —/ dzg(x)
2w Jo

Qap = %/OZW dzg(x) cos(nz)
Br = %/0% dzg(z)sin(nz)

b: Which of the following are true
1. all the coefficients 3, = 0.
2. the coefficients a,, = 0 for n > 1.

3. none of the above.

c: Calculate the coefficient ay.

4.2 Complex Fourier series.

LAST TIME

e derived the Fourier series of a function f(z) defined in a finite interval.
e defined the periodic, even and odd periodic extensions.

e derived formulas for the coefficients.

TODAY we will

e introduce the complex Fourier series
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e make some comments on convergence. This being a physics course we
will avoid getting too involved in such issues. The texts by Arfken and
Weber and Riley et. al. have more details than given here.

COMPLEX FOURIER SERIES
The trigonometric functions are intimately related to the exponential func-
tion with imaginary arguments (see section 1.3).

1. . .
cosf = 5(6’0 +e7%)

. L o 0
sinfl = —(e"” —e*
22'( )
or alternatively

e = cosf + isinf

Consider the Fourier series of a function f(z) defined for 0 < z < a

2nmx . 2nmx
+ By sin

f(z) =ao+ i[an cos ]

n=1 a

Substitution of the exponential forms into the Fourier series expression yields

f(x) = qp + % i{(an — iﬁn)e%'rinx/a + (an + iﬁnefﬁrinx/a)}
n=1

Combining terms we find that the series can be written

f(fl?) — Z Cn€i27rnx/a (13)
where
Qp; n=>0
Cp = %(an —iBn); m>0

%(an +iB,); n<0

By explicit integration we can show that

a .
/ ez27rna:/aefz27rmx/adx — afsnm
0
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from which we can find the coefficients. To see this multiply 13 by

e—27rimw/a

and integrate over a from 0 to +a. This gives

/ f(x)e—%rimx/adx —a Z OpmCn = ACpm,
0

n=-—oo

Since this holds for any m we find for the Fourier coefficients in (13)

Cn = _/ f($)e—i2wnx/ad$
0

The complex Fourier series is completely equivalent to the other types of
series, but gives often rise to simpler looking formalism.

CONVERGENCE
The restrictions on the function f(z) for it to have a Fourier series are mild:

the series will exist if f(z) is continuous except for a finite number of
jump discontinuities.

if there are jump discontinuities the series will fall off as 1/n for large
n and only be conditionally convergent.

if the function jumps from the value f_ to f, at some value of z the
Fourier series will converge to

S+ £2)

if the function is continuous the series will be uniformly convergent.

if the function and the first m derivatives are continuous the series the
series will fall off no slower than n=™=2 for large n.

MANIPULATION OF FOURIER SERIES:
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Suppose a function f(z) has a Fourier series

“+o00

f(z)= > c,exp(2minz/a)

n=-—0oo

Integration of the series term by term is generally harmless. Since integration

/dx exp(2minz/a) = exp(2minz/a)

2minx/a
brings down a factor of 1/n a series which is convergent for large n will
generally be more convergent after it is integrated.

Differentiation term by term requires uniform convergence i.e. the function
f(z) must be continuous. If the series is only conditionally convergent (see
1.4) differentiation will make the series divergent. We can see this by noting
that differentiation brings down an extra factor of n which becomes large for

large n.
2mine

d
I exp(2minz/a) = exp(2minz/a)
T

Conditional convergence typically occurs when the function f(z) is discon-
tinuous. The derivative at a discontinuity is infinite. Divergence of the series
must thus be expected.

Many useful tricks in summing up series involve integrating or differentiating
a series term by term.

SOME GENERAL PROPERTIES OF THE COMPLEX FOURIER SERIES
The function f(z) which is expanded in a Fourier series can be defined in in-
tervals other than 0 < x < a. Suppose ¢, is the Fourier coefficient associated
with the function f(z), —a < x < a. Then

f(.’l?): i Cneiﬂna:/a

n=-—00
i /a eiwnw/ae—iwmw/adx — 5nm
2a J-a
1 e ;
_ 727rnx/ad 14
en =50 | f@)e ™ dr (14)

we find
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e if f(z) is real then c,=c* .
o if f(z) = f(—=x) (even) then ¢, = real

e if f(z) = —f(—x) (odd) then ¢, = purely imaginary

POWER SPECTRA
From (14) we find

o0

a
o [ @l = Y el
aJ—a n=—o00

which is known as Parseval’s theorem. When x represents time, f(z) is
typically an amplitude, |f(z)|? represents an intensity and |c,|* will then be
a measure of the contribution of a particular frequency to the total power of
the signal, or its power spectrum. Since c,=c* , for a real signal, the sum over
negative n is sometimes neglected and the definition of the power spectrum
may differ by a factor of 2.

MULTIPLE FOURIER SERIES
The generalization to the case of several variables is straight forward. Sup-

pose f(z,y) is defined on the domain 0 < < a, 0 < y <b. Then

— ., T m
f(z,y) = Z Cn,m exp(27m(7 + Ty))
1 fo —97 1 b o
Cn,m = 5/0 dx exp( me)g/o dyf(z,y)exp(— le)ny)

The Maple worksheet at

http://www.physics.ubc.ca/ birger/p31216.mws (or.html)

illustrates how to evaluate Fourier coefficients and sum the different types of
Fourier series.

SUMMARY

We have:

101



e introduced the complex Fourier series.
e made comments about convergence.

e discussed rules for manipulating the series.

PROBLEMS

Problem 4.2:1 The function f(z) is periodic with period 4 and is defined

by
0 for =2 <zx< -1
) 1+z -1 <z <0
flz) = 11—z 0 <z<1
0 1 <z<L2

a: Expand the function in a complex Fourier series.

b: Plot the partial sum from n = —5 to n = 5. and compare with the
original function.

c: Verify that since f(x) is even the Fourier coeflicients are real.

d: Verify that since f(x) is continuous with discontinuous derivative the
coefficients fall off as n=2 for large n.

e: Compute the power spectrum of f(z) and verify that Parceval’s theorem
is satisfied.

4.3 Potential inside a rectangle.

LAST TIMES
Developed the theory of Fourier series including

e general Fourier series (sine and cosine) = periodic extension.
e complex Fourier series = periodic extension.
e sine series = odd extension.

e cosine series = periodic extension.

TODAY
Want to work through a complete example of how the Fourier series method
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works when combined with the method of separating the variables. As we
shall see the methods do get somewhat involved and again we shall resort to
Maple to complete the job.

POTENTIAL INSIDE A RECTANGLE
Consider the problem of solving the Laplace equation

Pu(z,y) N u(z,y)

Ox? 0y? =0

inside the rectangle
0<z<a, 0<y<bd

with the boundary conditions
u(z,0) = s(z); u(z,b) =n(z)

u(0,y) = w(y); u(a,y) = e(y)

We first note that the boundary conditions are not homogeneous. Hence, we
cannot apply the method of separation of variables method directly. We get
around this by splitting up the problem into two sub-problems

u(®,y) = w(z,y) + ua(z,y) (15)

where u; and us both satisfy the Laplace equation, but with different bound-
ary conditions

uy(z,0) = s(x), uz(z,0) =0
uy(z,b) = n(z), us(z,b) =0
u1(0,y) =0, u2(0,y) = w(x)
ui(a,y) =0, uz(a,y) = e(y) (16)

Equation (15) together with the boundary conditions (16) represent the so-
lution to the full problem. Let us first try to find an eigenfunction expansion
of ui(x,y) by the method of separation of variables:

ur(z,y) = &(x)n(y)
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Substituting into the Laplace equation and dividing by én we find
¢ dPn

— = ¢; = const.

Edz?  ndy?

The trick is to try to find eigenfunctions £(z) so that

We must first determine if the constant c¢; is positive or negative. Assume
first ¢; = A2 > 0. The solution to the differential equation for £ is

£(z) = dyexp(Ax) + da exp(—Az)

where d; and d; are constants. The boundary condition at * = 0 gives
d; = —dy. However it is then impossible to satisfy the boundary condition
at x = a. Hence

0> C1 — —)\2

The solution to the differential equation for ¢ is now
&(z) = ysin(Az) + 6 cos(Az)

The boundary condition at x = 0 now gives 6 = 0 while the condition at
T = a gives

)\:)\n:ﬂ; n=172..
a

The solution to the differential equation for 7 is then
nmwy nwy
T = On eXP(T) + B eXp(—T)

We express the function ui(x,y) as a series

ad nmy nmy.. . NIT
ui(z,y) = > (an exp(—=) + B, exp(——=)) sin ——
= a a a
The coefficients a,, and (3, can now be determined by the boundary conditions
at the south and north edge

e nwe

s(z) = (an + B,)sin -

n=1
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1(0) = 3 (e exp("I) + B exp(~"20) sin "2

n=1 a

We expand s(z),n(z) in a sine series (odd periodic extension)

nmwxr

Z Sy Sin ——

nmwxr

Z N, Sin ——

2 a
Sp = —/ s(x) sin(—mm)dx
0

a a
2 fo nwx

n— in(—)d

n a/o n(z) sin( . Ydx

The coefficients o, and (3, can then be obtained by solving the system of
equations
Sp = Qp + 571
nbm nbm
Mtn = i exp(— =) + o exp(———)

We find
Ny exp(””b) — 8,

exp( 2nmb ) 1

sn exp(22) — n,
exp(nﬂb) exp( n7rb)

The procedure to find uy is analogous. We write

n

s nmwT nTr.. . nmw
us(z,y) = > (v exp(—— 3 )+ 0n exp(—T))smTy

n=1

we again expand boundary conditions into a sine series

Z Wy, Sin @

= e 1n—
— " b
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W, / sin )dy

en =5 / sin )dy

The coefficients +, and 6, can then be determlned by solving the coupled
equations

= Yn + 0n
nam

namw
%exp( 5 ) + 6, exp(— : —)

We find

en exp(™%) — wy
exp(2214) — 1
wy, exp("7t) — en

exp( nwa ) exp( n7ra )

As we have seen, although each step is stra1ghtforward, there are rather many
steps and the procedure gets rather involved unless one has access to software
such as Maple. You will find a worked example on the worksheet
http://www.physics.ubc.ca/"birger/n312114a.mws (or .html)

where we also adress the problem that unless the functions s(z), n(z), w(y), e(y)
vanish at the corners of the rectangle, the boundary conditions for u; and
us will be discontinuous there. This will result in slow convergence of the
Fourier series for u; and us unless steps are taken to bypass the problem.
You may also wish to compare with the finite difference method of (section
3.3). I am not convinced that the Fourier method is necessarily better in this
case unless the problem somehow can be simplified, particularly since the
finite difference is more flexible. For instance, in the finite difference method
the room doesn’t have to be perfectly square.

Tn =

op =

PROBLEMS

Problem 4.3:1

Here is an example of a problem illustrating the points made in this section
but which does not have the full complexity of the general case.

a: Solve Laplace’s equation

Viu(z,y) =0
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inside a square of side @ with boundary conditions
. Y
U(O, y) = U(CL, y) = Sln(?)
x
u(z,0) = u(z,a) = sin(W—)
a
b: Solve the problem numerically using the method of finite differences, using
a grid of 400 internal points, and plot the solution.
c: Compare the exact and finite difference solution by plotting them along
the diagonal of the square.

Problem 4.3:2

Solve
il + Ou cos
JR— _ = €T
ox?  Oy?
subject to the boundary conditions
u(=5.9) = ul3,y) = ule,~3) = (e, ) = 0

4.4 Convective boundary conditions.

So far we have only considered cases where the period of the functions en-
tering the Fourier series was either equal to or twice the interval on which
the function was defined. Let us next consider a more complicated boundary
value problem. A conducting rod has one end kept at a fixed temperature,
while the other end is subject to convective heat transfer. The result will still
be expressible in the form of sine and cosine series, but the eigenvalue prob-
lem now forces us to go back to the more general Sturm Liouville problem of
(section 3.5) The heat equation is still

0*T 10T
012 kot
The initial condition is
T(z,0) = f(z)
At one end
T(0,t) = Tp
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The other end at = a is in contact with a fluid at temperature 77. The
heat flow at this end is governed by the boundary condition

oT

=a

(In order to avoid confusion with the eigenvalues A, we now call the convec-
tion constant h)

THE STEADY STATE

The steady state temperature satisfies

?Ts

dz?
with boundary conditions

—kdT,
T(0) =Ty, — | =hTs(a,t)=T]

z r=a

with solution WT - T))
z 1— 4o
Ts =Ty + ———
g 0+ Kk + ha

The transient thus must obey
U(.’E,t) = T(.’E,t) - TS(x)

%u  10u

or? kot
u(0,t) = 0; /{%

u(z,0) = f(z) = Ts = g(x)

+ hu(a,t) =0

EIGENVALUE PROBLEM
The next step is to find solutions on the form

u(z,t) = 7(t)p(x)

108



to the heat equation. As before

d2

— 4+ N\ =
122 +AXp=0
dr
— = Nk =
dt T

giving
$y = asin(Az) + B cos(Ar)
7 = exp(—A%kt)

Since ¢(0) = 0 we must have § = 0. The boundary condition at z = a is
thus
kA cos(Aa) + hsin(Aa) =0

This is a transcendental equation that needs to be solved numerically. As we
shall see there are infinitely many solutions

An, n=12..
to this equation.
We know from our discussion of the Sturm Liouville problem that if A,, # A,

we have

/ dz sin(A,z) sin(A,z) =0
0
We must next compute the normalization constants
b, = / dz[sin(\,2)]?
0
and the coefficients (g(x) is the initial transient)
1 e )
Qay = b_/ dz sin(A,z)g(x)
n 0

The temperature distribution is then given by

T(x,t) =Ts(z) + i ay, sin( A7) exp(—kA2t)

n=1
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We illustrate this next in the form of a Maple worksheet at
http://www.physics.ubc.ca/ birger/p312112.mws (or .html).

SUMMARY

e We have constructed a solution to a one dimensional heat conduction
problem.

e In this example one end was kept at fixed temperature while the other
had convective contact with a surrounding fluid.

e The eigenvalues A, had to be evaluated numerically.

e In practice, problems involving convective boundary conditions involve
use of computer programs such as Maple.

PROBLEMS

Problem 4.4:1 Consider the following eigenvalue problem (assume A > 0)

d*¢ B
o2 +Ap=0
do B
do B
¢(a) + %|w:a =0

Normally boundary value conditions that involve combinations of the func-
tion and its derivatives lead to transcendental equations, but in this case the
equations can be solved explicitly.

Find the eigenvalues A and eigenfunctions ¢ of the problem!

4.5 Generalization of the heat conduction problem
LAST TIME
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e We constructed a solution to a one dimensional heat conduction prob-
lem in which one end was kept at fixed temperature while the other
had convective contact with a surrounding fluid.

e The eigenvalues A\, had to be evaluated numerically and we found an
approximate solution to the problem using Maple.

TODAY
we will consider some further generalizations of the heat equation.

dx

—_— X —><—>
A T—> (D > jy(x+dx) A

As before let us consider heat conduction in a long rod... Again we neglect
radial heat losses. However, we now wish to be able to take into account
the possibility that the thermal conductivity « and heat capacity Cy varies
along the length of the rod. To do this let us go back to the derivation of
the heat equation. The axial influx at z is

OT (z,t)

Aj(z) = —Ar(z) 9

The heat leaving at the other end is

T (z + dx,t)
ox
The difference will be the heat build-up in the element
oT (z,t)
ot
We are thus left with the modified heat equation:

0 oT oT
%(H(x)%) = Cv(x)g

Aj(z +dr) = —Ak(z + dz)

Cv(x)
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THE STEADY STATE
The steady state problem can still be solved. We have

2 @) =g, ) =0
or IT.(2)
s\T)
k() i
This equation can be integrated to yield
dz'

T
TS:CZ+CI/Z

k(')

where the two constants ¢; and ¢, must be determined by the boundary
conditions at x = [ and = = r (the ends of the rod).

BOUNDARY VALUE PROBLEM
We now wish to express the problem as an example of the regular Sturm-
Liouville problem that we briefly alluded to in section 3.5. To do this we
let
k(z) = s(z)R
Cv(z) = p(z)Cv
where % and Cy,, represent some ”average” values of the thermal conductivity

and heat capacity, and let & = &/Cy. With these substitutions the partial
differential equation for u becomes

0 ou 1 ou
g(s(ﬂf)%) = Ep(ﬂf)g

We use the method of separation of variables to solve this equation.

u(x,t) = ¢(x)7(t)

r(0) - s(2) 3 = ol P
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Dividing through gives

1 d dé@) 1 dr() _
W@S(‘”) Ao R at Ccomst=A

As before we have

a2
T =cre T

where we put ¢; = 1 absorbing the constant in the function ¢. The differential
equation for ¢ is then

—s(z)— + A*p(z)p = 0 (17)

As we did in section 3.5 we assume that the boundary conditions are

alqﬁ(l) + bl%il) =0

dg(r)

dz =0

ar(r) + b,

ORTHOGONALITY
In lecture 12 we showed that when ¢ satisfied

QS” + /\n¢ =0
the eigenfunctions satisfied the orthogonality relationship
!

We also claimed that in the case of the more complicated differential equation
(17) the orthogonality relationship must be modified to read

| dzp(@)on(@)om(z) =0, A2 # A2,
!
As in the previous case the boundary conditions require that

apn(l) — bigy, (1) =0
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a1 (1) — bigp, (1) = 0
and the determinant
ball) — 4 (1) ‘ Y
Pm(l) —d5,(1)

Hence
—0n(D)on (1) + dm (D), (1) =0
Similarly at the other end
_qsn(r)qzs;n(r) + gbm(r)qbln(r) =0
From the differential equation we have
(5¢m)' = —AnDm
(s¢n)' = —)\ipd)n
We thus find
(2-2) [ do p(@)on(@)om(@) = [ d(s(@)6a(@)) om(x)~(5(2)m (2)) 60 (z)

Integrating the last integral by parts and assuming that

A2 = A2 £0
we find
/lr dz p(x)Pn(x)dm(z) = 2 i X [=¢n(@)s(2) ¢ () +@m(z)s(z)¢y, (2)]]] = 0
g.e.d.

REGULAR STURM LIOUVILLE PROBLEM:

If p(z) and s(x) are both non-zero and positive the eigenvalue problem is
called regular and one can prove some rather strong results. In the present
case the restriction to positive values will always be satisfied because of the
physical interpretation of these functions as thermal conductivity and specific
heat, later on we will, however encounter singular Sturm-Liouville problems.

e The eigenfunctions are unique except for a multiplicative constant.
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e Since the eigenvalue A\ enters as a square in the differential equation
defining the eigenvalue problem we can choose A to be positive.

e If we order the eigenvalues A\; < Ay--+ < A, the nth eigenfunction will
have exactly n — 1 zeroes in the range [ < x < r.

e The eigenfunctions are complete, that is an arbitrary function

flz), I<z<r

can be expanded in terms of the eigenfunctions
o0

flz) = Z QU Bn ()
n=1

where

an =4 [ dep(a) ()6 (2)
by = [ dep(a)od(a)

We will revisit the question of completeness later when discussing the Dirac
d—function (section 6.2).

The generalizations of the heat equation above leaves the equation linear. As
we have seen the problem becomes more difficult when x and C'y no longer
are constant but depend on the coordinate x. Still, because of the linearity,
the superposition principle still applies (section 2.1) we can still employ the
methods of separation of variables and eigenfunction expansions.

Material properties such as « and Cy may also depend on the tempera-
ture. When this happens the differential equation becomes non-linear and
the superposition principle will not be valid, making the problem much more
difficult. If the temperature dependence is weak one can sometimes make
progress using successive approximations. To do this let us first solve the
problem assuming values of x and Cy corresponding to some average tem-
perature Ty. We then substitute the recalculated value of the temperature
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into k and Cy and repeat the procedure. For the steady state temperature
the method is in principle straightforward, but for the transient we encounter
the additional property that the resulting differential equation may not be
separable.

SUMMARY

e We have generalized the heat conduction equation to one in which the
thermal conductivity and the heat capacity could depend on position.

e The boundary value problem then became an example of the regular
Sturm-Liouville problem.

e We proved the orthogonality relationship for the eigenfunctions in the
regular Sturm-Liouville problem.

e We also stated without proof some important general properties of the
eigenfunctions and eigenvalues.

e When the thermal conductivity and the heat capacity in addition de-
pend on temperature the problem becomes non-linear and much more
difficult.

PROBLEMS

Problem 4.5:1
A rod of length a is initially (¢ = 0) at temperature 77 = 0. It is put into
convective contact with a fluid with temperature 7. The temperatures at
the ends (z = 0) and (x = a) are kept at 7" = 0, but towards the middle
the temperature rises towards Ty. Assume that the temperature distribution
satisfies the differential equation
0*T

gz V(T T)=

for t > 0, with k£ and v constants.

10T
k Ot

a:
Find the steady state temperature distribution Ts(z).
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b:
Find the differential equation satisfied by the transient.

u(z,t) =T(x,t) — Ts(z)

c:
What is the initial temperature distribution for the transient?

d:

Solve the transient problem formally, by assuming that the initial tempera-
ture u(x,0) has a Fourier sine series:

o0

. ,NTX
u(z,0) = ¢ sin(—)
n=0 a
(for this part of the problem you don’t need to calculate the Fourier coeffi-
cients).
e:

Could you find the time dependent temperature distribution directly without
subtracting the steady state?

f:

Plot the temperature distribution at timet¢ =1fora =k =y =T, = 1. (For
this part of the problem you need to compute the first few Fourier coefficients
either with or without the steady state subtracted.)

4.6 Non-homogeneous equations. LRC circuit.

LAST TIME
e Discussed generalizations of the 1 dimensional heat equation

e Showed how more generalized Sturm-Liouville problems could arise
than we had considered so far

TODAY: Consider another generalization, we wish to show how Fourier
methods can be used to solve inhomogeneous equations. As an example
we consider the simple LRC-circuit.

LRC-CIRCUIT
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f(t) L

The charge ¢ on the capacitor satisfies the differential equation

where

L = inductance

R = resistance

C = capacitance

V = applied voltage

As we did in section 2.3 our first step is to reduce the number of parameters.
Let us define the new time variable

and replace g by

and let



The differential equation in the new variables is

d?y dy
ﬁ+2ad—+y—f( )

CHARACTERISTIC EQUATION
Let us first look at the solutions to the homogeneous equation

Pyn dyn
20 -2h —
drz 20 T =0

You may recall from MATH 215 that for equations with constant coefficients
it pays to try solutions on form

y=e
This gives the characteristic equation
AN +2aA+1=0

with roots

A=—-at++vaz-1

There are three main cases depending on whether the roots are distinct, real
or complex:

OVER DAMPED CASE a > 1
The characteristic equation has two real roots. The solution to the homoge-
neous equation is

yn(7) = C’e (e+vaZ-1)r —|—O€ (a—vaZ-T)r

CRITICAL DAMPING a =1
The two roots coincide and the general solution is

Yn = (01 + 027')67

as can easily be verified by substituting into the differential equation.

119



UNDER DAMPED CASE a <1
The characteristic equation has two complex roots. The solution to the
homogeneous equation is now

yp = c1 exp(T[—a + ivV1 — a?])
+¢y exp(T][—a — V1 — a?))

which can be rewritten in terms of real functions

yp = [Cysin(tv1 — a?) + Cy cos(TvV1 — a?)]e™ "

TRANSIENTS
The general solution to the homogeneous equation approaches zero for long
times

lim y, =0

T—00

The physical solution only depends on initial conditions for a transient period,
which often is quite short. After that the memory of initial conditions is lost
and the solution is independent of initial conditions.

If we mainly care about the transient we can solve the inhomogeneous dif-
ferential equation by adding the particular solution

w(r) = [ Gl (r)ar

to the homogeneous solution with the Green’s function computed as shown
in (section 2.2. However, the Green’s function method is unnecessarily cum-
bersome if we don’t care about the initial conditions and the transient!

FOURIER TRANSFORM OF DERIVATIVES
One of the chief advantages of the Fourier method is that taking derivatives
is easy:

Suppose a function y(¢) has the Fourier series

y(T): Z nn6i27rnr/a

n=-—oo
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The derivative of y is

dy — 127n i2mnT/a
dr 2 €

n=-—oo

Hence the derivative has Fourier coefficients

127N

TIn

The process can be repeated. The Fourier coefficients of the second derivative

are
2mn

_(T)znn

PERIODIC FORCING

If the forcing term f(7) is periodic we expand it in a Fourier series. We may
use either the sine&cosine series or the complex form. We prefer the latter
since it leads to simpler formulas.

f(T): Z Cnei27rnr/a

n=—oo

where we assume that the period is a and

Cp = _/ f(T)dTeszTrnT/a
0

We assume the particular solution of interest also has the Fourier series

i .
yp(T): Z nnez27rn7'/a

n=—oo

We require that the left and right hand side of the differential equation

d’y dy
29 49027 —
dr? + adT ty=fr)
have the same series. Using our formulas for derivatives we find
2mn 2T
(—(7)2 + 204@7 + ), =cp
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we find
Cn

U 2mn s 21N
—(Z7)2 + 2t 4 1

a

The solution of interest is thus

00 el2mnT /a

yP(T): Z _(2Trn

n=-—o00 a

Cn
)2 + 2i02™ + 1

The Fourier coefficients can be rewritten in terms of an amplitude and phase

T = Cn eidn
n =
VL= (32)22 + 20272

where the shift in phase is
¢y =tan P —2

Let us illustrate this by an example:
http://www.physics.ubc.ca/ birger/p31218. mws (or.html)

ORGAN PIPE WITH PERIODIC FORCING
The method outlined above can be extended to problems in both space and
time. As and example consider the inhomogeneous wave equation of (section
3.2) , ,
0 0 .
3—t§ — cza—xi + ka = f(x)e™"
where we use the complex form e*? rather than cos wt with the understanding
that the physical solution is the real part of £. We showed in section 3.2 that
the solutions to the homogeneous equation will decay exponentially in time.
If we are not interested in the transient the solution to our problem will be
proportional to the driving term. To be specific let us assume that the pipe

is closed at both ends. We expand f(z) in a sine series

@)= 3 fusin(")

23

where a is the length of the pipe. We try

(o)
E(z,t) = Z &, sin @ei“’t
a

n=1
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Substitution into the differential equation gives

© An2r? . nmx © . nmx
> (—w®+ + twk)&pe™t sin —— = Y fre sin ——
n=1 a? a 1 a

Because of the orthogonality relationship of the sine functions we can equate
term by term and find

fr

222 .
—w? + S+ iwk

gn:

and with the understanding that we should take the real part
nre iwt

fn sin Te

2,22 .
24 et ok

&(z,t) = RZ: —

To proceed further we need to specify f(z). Since we already have discussed
how to make and sum Fourier series we stop here.

SUMMARY
e We have used the complex Fourier series to analyze a LRC circuit.

e The Fourier method is easier to apply than the Green’s function method,
particularly when transients can be neglected.

When the forcing term is periodic, the Fourier series is appropriate.

We used a Maple worksheet to work out an example.

Finally we generalized the method to a spatial problem.

PROBLEMS

Problem 4.6:1
a: For what values of p is

T(z,t) = const.e Prel@t=Po)
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solution to the one-dimensional heat equation.

0*T 10T

or2 kot
b: Use the solutions found in a: to find a solution to the heat equation with
boundary conditions

T(0,t) = T(a,t) = Ae™*

c: Show that the real part of the solution solves the heat equation with
boundary conditions

T(0,t) = T(a,t) = Acos(wt)

d: Show that for long times solutions with arbitrary initial conditions will
approach the solutions found in c: at long times.

Problem 4.6:2
Consider the LCR circuit of section 4.6 in reduced units
d*y dy
— 4+ 2a—= =V
dr? + Yir ty (7)
Here the terms on the left hand side represents the voltage over, respectively,
the inductor, the resistor and the capacitor. Let

V(r) = f(wr)

where f(x) is the rectified sine wave considered above.

Find the complex Fourier coeflicients ¢, of V(7) in the interval 0 < 7 < 7/w.
Plot in the same graph the voltage over the capacitor with w = 1/2,1 and 2.
Plot in the same graph the voltage over the inductor with w = 1/2,1 and 2.

4.7 Discrete Fourier series. Time series. Fast Fourier
transform.

Up until now we have, in our treatment of Fourier methods, expanded in

functions such as
. nmx nmwr 2nmix
sin , COS , €Xp
a a a
The sum of the resulting series can then be evaluated for a continuum of
r—values. There are a number of situations where it is more convenient to

evaluate a function on a discrete lattice of points. Some examples:
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The position of atoms in a crystal can best be described as a discrete
set of points, when describing e.g. lattice vibrations.

X-ray diffraction is an important technique in determining crystal struc-
tures. Again the description involves positions of atoms on a discrete
set of points. The discrete Fourier transform of the lattice is called the
reciprocal lattice and it plays a crucial role in solid state physics.

There are many practical situations where one samples a variable at
regular time intervals. Fourier methods provide important tools when
analyzing such time series. Examples are data for environmental vari-
ables such as temperatures, rainfall, pollution levels, water levels of
rivers, or financial data such values of currencies, stock market prices
etc.

Modern technology places an increasing importance on digital rather
than analog representation of information.

The discrete Fourier transform plays an important réle in image pro-
cessing.

As we already have found in our treatment of finite difference meth-
ods, some problems are more efficiently approximated by determining
variables on a discrete grid. We may then use interpolation methods
to approximate the results on intermediate points.

The availability of the fast Fourier transform (FFT) algorithm allows
one to use Fourier method efficiently for discrete systems.

DISCRETE FOURIER TRANSFORM

Suppose we have available the values of a function f; on a discrete set of
points labeled by the index k, £ = 0,1,2...N — 1. In the case of a time series
the point k corresponds to the sampling times

ty = kA

if the first time is ¢t = 0. We define the discrete Fourier transform of the N
numbers f; as F,, n =0,1,2,...N — 1 where

N1 2mwikn
k=0
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(Be warned that this is not the only convention. I am trying to adhere to
the notation used by Maple. Some people don’t put the minus sign in the

exponential, or they place a factor 1/N or 1/\/EN) in front of the sum).

If we allow n, k to be outside the range 0,1,2..N — 1 the extension is

fkiN - fk7 Foin = F,
i.e. the periodic extension is understood. If f; is a time series the numbers
n are associated with the frequencies
_on
- NA

if measured in Hertz (periods/second) or

Un

B 2m™n

- NA

if measured in radians/second. Consider the geometric series (section 1.4)

Wn

=l 2mik(m — n)

Sum = kz_: esp( L - 1 — exp(2mi(m — n))

1_ eXp(27ri(nN'Lfn))

If n —m # 0,£N,£2N... we see that S, ,,, = 0. If n = m or n — m is some
multiple of N the formula for S is undetermined (0/0), but by inspecting the
sum we see that each term is unity so

Spn =N
The orthogonality relation
N n=m
Snm = { 0 n#m

allows us to find the inverse of the discrete Fourier transform

1 V! omikn

Some properties of the discrete Fourier transform:
If

126



fk = fk-i—N; Fn = I'ntN

frisreal = F, = F* = Fn_,*

fr is imaginary = F,, = —F™*

n

friseven (fr = fx) = F,=F_,
e f isodd (fk = —f,k) = F,=-F,

where * indicates complex conjugate. Most signals which we wish to analyze
are real. F,, and F*, and by extension Fy_, will then be the same, and we
see that there are only N/2 distinct frequencies. The frequency

_ L
- 2A

VC
is commonly referred to as the Nyquist frequency.

POWER SPECTRUM
The magnitude square | fy
and we refer to the sum

|? of a signal is commonly referred to as its intensity

N-1
2
> |fil
k=0
as the total power. It is easy to verify using the orthogonality relations that

the discrete Fourier series satisfies Parseval’s theorem

1 N-1

N-1
SRR = 5 X IR
k=0 n=0

The magnitude square of the Fourier coefficients is called the power spectral
density
P(v,) = |Fn|2 + |an|2

(It is conventional to restrict the frequencies to |v,| < v, and not distinguish
between positive and negative frequencies. Sometimes one doesn’t add the
two terms and the power spectral density is given as 1/2 of the above)

SAMPLING THEOREM
Suppose f(t) is a function defined for 0 < ¢ < T and we wish to reconstruct

127



it by sampling the function at the N regularly spaced points (excluding the
end point ¢t = T'). We say that the function f(¢) is bandwidth limited to the
frequency v (in periods per second) if its Fourier series

F)= > cnexp( T )

does not contain any Fourier coefficients with n larger in magnitude than
n =rvA

The Nyquist sampling theorem states that, if the function f(¢) is bandwidth
limited to the Nyquist frequency, it can be completely reconstructed by dis-
crete sampling. (We will find a explicit form for this reconstructions in
connection with our discussion of completeness and the Dirac delta-function
in section 6.2. If the sampled function contains Fourier coefficient higher
than the Nyquist frequency to a significant degree, we run into the following
problem: signal components that vary as exp 2w14t and exp 2wyt sample the
same way, if v; — 1, differ by a multiple of the sampling frequency 1/A. Then
higher order Fourier coefficients gets folded back into F,,. This phenomenon
is called aliasing, and is something one wishes to avoid in signal processing.
A number of filtering methods have been developed for this purpose, but a
discussion of this point is beyond the scope of this course.

MULTIPLE DISCRETE FOURIER SERIES

The generalization to the case of more than one dimension is in principle
straightforward. Consider e.g. a two dimensional N, x N, grid on which we
sample the function f(z,y)

oh=kA,, k=01..N,—1, yy=1IA,, 1=0,1..N,—1
frg = f(zr, 01)
The discrete Fourier transform of f(z,y) is
Ny—1Ny—1

Fom = z_: z_: f(k, 1) exp{—2mi(nk/N, + ml/N,)}

128



with inverse

1 Ne—1Ny—1

NN, > Y F(n,m)exp{2ri(nk/N, + ml/N,)}

k=0 (=0

fri=

FAST FOURIER TRANSFORM

A naive implementation of the discrete Fourier transform would involve at
least N2 multiplications. This mean the computing time should increase with
the square of the number of terms in the series. For long series with, say, a
millions of data points the computational effort would be prohibitive. In the
mid 60’s the so-called Fast Fourier algorithm became available and reduced
the computation time by a potentially enormous factor. It is not necessary
to understand the details of this algorithm in order to use it, but one quirk
of it must be pointed out. In order to take full advantage of the algorithm
the number of points to be transformed should be exactly 2™ where m is an
integer. In the Maple worksheet

http://www.physics.ubc.ca/ birger/n312120a.mws (or .html)

we give examples of the discrete Fourier transform and the use of the FFT
method. In particular we explore the connection between the discrete Fourier
transform and stochastic processes such as the random walk.

Further reading: ”Numerical recipes” [9] contains a lot of details on the
discrete Fourier transform. This book is also available on the web
http://www.nr.com/

For a readable introduction to time series see the book by Feder [4].

PROBLEMS

Problem 4.7:1
Throughout this problem set we will consider the rectified sine wave

f(z) = |sin(z)]

It is periodic with period 7, and can be considered as the periodic extension
of
g(z) =sin(z), 0<z<m
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a:
Expand f(z) in a complez Fourier series in the interval 0 < z < 7

f(z) = :Z.j: Cn exp(2in)

and show that the Fourier coefficients are

2

n = (1 — 4n?)

b: Suppose we hadn’t noticed that the period is 7, and expand in a complex
Fourier series in the interval 0 < x < 2. The Fourier series is now

f(z) = i d,, exp(inz)

Find the Fourier coefficients d,, and compare to the result found in a:
c: Let us next sample the function f(z) at N = 2™ values of z

kmw
Tp = —
FTN

We wish to find the discrete Fourier transform F,, of f; = f(z) for some
values of m. Is F, real? Plot Re F,/N and ¢, in the same graph between
n=0and n=N/2—1for m =3, N = 8. Repeat for m =6, N = 64. d:

Problem 4.7:2
Consider the function

flzy=1-2% -1<z<1

a:
Find the coefficient ¢, in the Fourier expansion

f(z) = i Cn exp(inmz)

n=-—0oo
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Are the Fourier coefficients ¢, real?

b:
Let us next sample the function f(x) at the N = 2™ values of z
2k -N —N N
=—, k= — —4+1,---——1
TN 202 T

Calculate the discrete Fourier transform F), of f;, = f(zy) for m = 6.

c:

Approximate the sum over & in the definition of F,, by an integral. By what
factor o must F}, be multiplied to be approximately equal to the coefficient
¢p in part a:?

d: Check your previous result by plotting the first few Fourier coefficients ¢,
and aF), in the same graph for m = 6.

5 Bessel and Legendre functions

5.1 Laplace equation in polar coordinates

Up until now we have concentrated on problems which either involved only
one spatial dimension, or where Cartesian coordinates were used.

TODAY

We wish to start on problems where polar, spherical or cylindrical coordinates
are employed. We begin by solving the 2-dimensional Laplace equation in
polar coordinates (section 3.3)

82u+ 10u N 1 9%u
or?2  ror  r?200?
We assume, as boundary condition, that the potential u(r, ) is known along

a circle r = a, where a is a constant:

u(a,0) = f(0) = given

=0

we also assume that the solution is bounded in the region of interest. We now
encounter a new type of boundary condition. If we increase (or decrease) the
angle # by 27, we return to our starting point. Hence, we require that

u(r,0) = u(r,0 + 2m)
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this type of boundary condition is called periodic.

We attempt to solve the problem using the method of separation of variables
and put

u(r,0) = p(r)T'(6)
Substituting into the partial differential equation and multiplying by r? and
dividing by pf we obtain, letting the prime indicate differentiation:

7”2 P” +r p/ T//

= ¢ = const
P T
If c is negative we put ¢ = —2 and obtain
T// — ’)/2T

with general solution
T = Asinh(y8) + B cosh(v6)

There is no way this solution can be used to produce periodic functions in 6,
and we reject the possibility that ¢ < 0. Writing ¢ = A\? we find

T" + \’T =0

with
T = Asin(\0) + B cos(\0)

The periodicity condition now requires that
A = n = integer (or zero)
The differential equation for p is now
r2p" +rp —n?p (18)
If n # 0 the general solution to (18) is
p(r)y=cr" +dr ™" (19)
If n = 0 the general solution is

p=c+dlnr (20)
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We now distinguish three cases

CASE L.
We require the solution inside the circle r = a for which

u(a,0) = £(6)

The solution should be bounded at » = 0. This requires that we put d =0
in (19). Similarly the logarithmic term in (20) must be zero. The solution is
then be on the form

u(r, ) = i a,r" cos(nf) + i Bnr"™ sin(nh) (21)
n=>0 n=1

The coefficients «, and 3, can be determined by expanding f () in a Fourier
series

1 27
a0 =5 /0 £(6)d6
a, = aiw /027r f(6)df cos(nb)
1 2w
o= — /0 £(6)d0sin(nd)

Consider the special case r = 0 (center of circle). When r = 0 all the terms
except the n = 0 term in the cosine series vanish and we find

u(0) = %/O%fw)dﬁ

The potential at the center is the average of the potential over a circle sur-
rounding it. The average cannot be larger (or smaller) than the largest
(smallest) value over which we average. Hence: maxima and minima of so-
lutions to the Laplace equation only occur on the boundary of the solution
T€gIon.

CASE T1I.
We require the solution outside the circle r = a for which

u(a,0) = £(6)
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We also require that the solution is bounded in the limit »r — oo. This
demands that we put ¢ = 0 in (19). Again, the logarithmic term in (20)
must be zero. The solution will then be on the form

u(r,0) = i a,r " cos(nf) + i Bnr " sin(nh) (22)
n=0 n=1

As before, the coefficients o, and (3, can be determined by expanding f(6)
in a Fourier series

o
n

oo = — /()27rf(9)d9

S]

/027r f(6)df cos(nb)

al

n

g, =L /0 1 (0)d0sin(nd)

™

S]

We note that the external solution (case II) will not be bounded as r — 0,
while the internal solution (case I) is not bounded as r — oo. Hence: the only
solution to the Laplace equation which is bounded in the entire x — y-plane is
u = const.

CASE III.

We require the solution in an annulus (region between two circles).

We now need to combine the external and internal solution. For simplicity
let us assume that the potential is u(r = a) = u, = const and u(r = b) =
up = const, i.e. there is no angular dependence. and the n # 0 terms in the
Fourier series vanish.

We seek a solution to the potential equation on the form

u(r)=Alnr+ B
The boundary conditions require that
Alna+ B = u,

Alnb+ B = wy

The solution is b |
Up — Ug U Inb — uplna
A="2 —; B = 5 b

lna lng
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SUMMARY
We have found solutions to the Laplace equation in polar coordinates by the
method of separation of variables for a variety of situations.

PROBLEMS

Problem 5.1:1
A thin metal ring is thermally insulated from its surroundings. The radius
of the ring is L meter and its thermal diffusivity is k meter?sec . Assume
that the temperature of the ring is 7'(6,¢).

a: Assume the initial temperature is 7(0,0) = f(#). Find the subsequent
temperature distribution.

b: Assume that
f(6) =Tycosb

How long will it take for the temperature difference between the hottest
and coldest spot on the ring to halve?

Problem 5.12:
Solve the 2-dimensional Laplace equation

V2u(r,6) =0
in polar coordinates in the region a < r < 2a with boundary conditions
u(a,0) = cosb; u(2a,0) = cosb
Problem 5.13:

Solve
Viu=1

inside a sphere of radius 1. The boundary condition is

u(1,0,4) =0
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Hint: Assume that u is independent of # and ¢. It is possible to find a
particular solution proportional to 72. The solution should be finite at the
origin.

Problem 5.1:1
In class we wrote for the Laplace equation in polar coordinates

u  10u 1 0%u
V=Gt treoe =0 (23)

a: Show that the first two terms on the left hand side of (23) can be rewritten
as

Pu 10u 10, Ou

or? * ror r@r(rar)
b: If the boundary conditions are such that the solution is independent of
the angle 6 the Laplace equation becomes an ordinary differential equation
in the variable r only. Show that

Viu = £(r)

has a particular solution

u(r) = /a drl/ dry ro f(72)

where the lower limits of integration a and b are arbitrary.
c: Use the above result to find the solution to

V2u = 1; u(0) = 0, u independent of 6

5.2 Derivation of wave and heat equation in higher
dimension.

LAST TIME
We solved the Laplace equation in polar coordinates.

TODAY
We wish to proceed to the wave and heat equations.
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THE VIBRATING STRING

In section 3.1 we derived the one-dimensional wave equation for sound waves.
For the two dimensional wave equation I have chosen a different example: the
vibrating membrane. First consider the one-dimensional version of this prob-
lem the flexible vibrating string. Let us assume that the string is stretched
along the z—direction and executes transverse oscillations in the z—direction.
We assume that the tension 7' of the string is uniform, as is the mass density
p (mass per unit length). We will throughout assume that the amplitude z
is small. Define # as the angle of a segment of dx with respect to the z-axis

0z(z,t)

9 =tanf ~ 6

The projection of the tension in the z— direction is then

0z(x,t)

X

Tsin@~TO0=T

The net z—component of the force on the segment dx centered at x is

o 02(x 4 d/2,t)  Ox(x —dx/2,t), 0%2(x,t)
f: =11 oz Oz )~ Tda Oz?

The mass of this segment is pdz. From Newton’s second law (force = mass
X acceleration) we find

2 2
x@ z(z,t) dwa z(z,t)

T —
dv—53 P 5

We define
c=—
P
and obtain
5 0%2(z,t) _ 0%2(x,t)
Ox? ot?
If there is an external force f(z,t) per unit length of the string, acting in the
transverse direction (e.g. the bow of a violin), we obtain instead

C

0%z (x,t)
T~ 7
Oz?

0%2(z,t)

+ft) =p—ps
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THE VIBRATING MEMBRANE

The generalization to the two dimensional case is fairly straightforward. We
now consider an element of area of mass pdzdy vibrating in the z—direction.
We assume that there is a uniform tension 7' (force per unit length), acting
on the area element. We again make the small amplitude approximation and
assume that the segment is centered at a point with coordinates z,y. The
net force in the z—direction is now

0z(x +dx/2,y,t) Oz(x —dz/2,y,t)

=T _
f: ay( ox ox )
+de(3Z(x, y+dy/2,t)  9z(x,y —dy/2, t))
ox ox
z(z,y,t) | 0%2(z,y,)
~ Tdxdy( o2 T oy )

This force must be equal to the mass X acceleration of the volume element.
We find

z(x,y,t)  0%2(z,y,) 0%z(x,y,t)
T — A
dzdy( oz T oy ) = pdzdy 542
or 52
22, _ 0%
C V z = w

THREE DIMENSIONAL HEAT EQUATION
We derived the one-dimensional heat equation in section 3.4. Let us consider
an element of volume

dV = dzdydz
centered at a point with coordinates
7= |z,vy, 2]

Consider a face of the volume element perpendicular to the z—axis located
at z—dz/2. The area of the face is dzdy. Heat flows into the volume element
through the face at the rate
OT (z,y,z — dz/2,t)

0z

—dxdyk
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while the heat flowing out of the opposing face at z + dz/2 is

T (z,y,z +dz/2,t)
0z

—dzrdyk
We have

heat in — heat out = C'dV x temperature change

where C' is the heat capacity per unit volume. We also have

T (x,y,z +dz/2,t 0T (z,y,z—dz/2,t
PN ACYR RS LN N AN RAL TLA)
0*T(x,y, z,t)

022

~ dxdydzk
Collecting terms we find

T (z,y, z,t) N T (z,y, z,t) N T (xz,y, z,t)

oT
drdydzr( 922 o 5.7 )= C’d:pdydzg
Defining
K
k=—
C
we obtain the heat equation
aT
EVAT = —
v ot

Sometimes it is convenient to use vector calculus to describe the situation.
The heat current density(heat flow per unit area) fis given by the tempera-
ture gradient

jo = —KkVT

The rate at which heat is accumulating per unit volume is given by the
divergence of the current density

~V - jo = kVT

equating this to (rate of change of the temperature)x (heat capacity) yields
the heat equation.
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Almost identical arguments can be used to describe diffusion. We have

oc
DVie=—
ot
where D is the diffusion constant and c is the concentration of some sub-

stance.

SUMMARY
We have derived the wave equation for a vibrating membrane and also the
three dimensional heat equation.

5.3 Bessel’s equation

LAST TIME
We derived the two dimensional wave equation for the case of a vibrating
membrane and also derived the three-dimensional heat equation.

TODAY

We wish to show that, although the two equations describe very different
physics, when applying the method of separation of variables, the math-
ematics is often very similar for the two cases. In particular we wish to
demonstrate how the Bessel differential equation arises naturally when us-
ing polar or cylindrical coordinates. We will first consider the simplest case:
polar coordinates.

The wave equation in polar coordinates is (see section 3.3for the formulas for
the Laplacian in different coordinate systems)

Pu 10u 10%u 1 0%

e e
or?2  ror r200%2 2ot
while the heat equation in the same coordinate system is

vy 10u 10% 10u

st ot S =

or2  ror r200%> kot
In both cases we attempt to solve the equations by separating the variables
writing

u = R(7)7(t)
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As we have done before we let prime (/) indicate differentiation. We find for
the wave equation
V2R(F)  1Tn )

= —— =const. = —\
R 2T

(as before the constant has to be negative in order that 7 remains bounded
for large positive and negative times). To mark this we write (as we have
done before) —\? for the separation constant.

™ + X1 =0
Giving
7(t) = Acos(At) + Bsin(At)

In the case of the heat equation we have

2 — !
VOR(7) = 11 = const. = —\?

R kT

The solution for 7(t) is now
7 = const exp(—kM*t)
so that in both cases we have the equation for the spatial part

2 1 1 2
V2R(r,0) + N’R = orR + OR OR

—_— —_— 2 pr—
or? r8r+r2092+)\R 0

We again attempt to separate the variables writing

R(r,0) = p(r)T ()

We find
,r,2pll+,’,,pl_|_)\2,r,2p_ TII B 9
=——=n
P T
The equation for T
T"+n*T =0

has solution
T = Acos(nf) + Bsin(nb)
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and the condition that 7' is periodic with period 27 requires that n is an
integer or zero. This leaves us with the differential equation for p

rzp”+rp+()\2r2—n2)p:0

The above equation is called Bessel’s equation. We first note that if we
introduce the new dependent variable

r=Ar
the differential equation simplifies to

?p  dp
22 2 2y _
dx2+xdx—|—(x —n°)p=0

and becomes independent of A. This means that we can write the solutions
of Bessel’s equation as
p(Ar) = p(z)

We also note that the differential equation is singular at » = 0. It is instruc-
tive to study the behavior of the solutions for small r. If A\r << 1 we neglect
the term proportional to A272 and approximate

sz" +rp — n2p ~ 0

We have encountered this equation before when solving the Laplace equation
in polar coordinates the general solution is

p=Ar"+Br ", ifn#0
p=A+Blnr; n=0

The terms proportional to A are bounded as r — 0, while the terms
proportional to B are not. Indeed, it turns out to be possible by direct sub-
stitution into the Bessel differential equations to find a power series solution
(we prove this result in section 5.6)

p=Jn(Ar "i

m=0

(=)™ )\r
ml(n + m) 2

=) (24)
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Bessel functions of the first kind

n=0

Bessel functions of the second kind

n=0 n=1
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One can also use the method of variation of parameters (see section 2.2) to
find a second independent solution. It is conventional to write the general
solution to Bessel’s equation as

p = AJ,(Ar) + BY,(Ar)

where J,(Ar) is called the Bessel function of the first kind, and is given by
the power series expansion (24). This expansion converges for all bounded
values of r. The solution Y, (Ar) is called Bessel function of the second kind.
It is singular as r — 0:

Yo(z) xz™asz —0ifn#0

Yo(z) xInz asz — 0

Because of its singular behavior, as the argument goes to zero, the Bessel
functions of the second kind are used much less than those of the first kind.
In the next two lectures we will through examples explore the behavior of
Bessel functions in more detail. The figures on the previous page show the
first few Bessel functions of the first and second kind.

5.4 Vibrating membrane

LAST TIME
when separating variables in polar coordinates we encountered Bessel’s equa-
tion on the form

Eo(r)  1dp ., n?
e rar T

The general solutions to this equation can be written

o) =0
p(r) = AJ,(Ar) + BY,(\r)

where A and B are arbitrary constants and J,,(Ar) and Y;,(Ar) are the Bessel
functions of the first and second kind, respectively. The Bessel functions
have the properties that

Jo(Ar) =1, r =0

Jo(Ar)ocr™, r—=0if n#0
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Yo(Ar) o< ln(r), r — 0
Yo(Ar) ocr™ r —=0ifn#0
TODAY
we wish to familiarize ourselves more with the Bessel functions, using a vi-

brating membrane as an example. We wish to find solutions to the two
dimensional wave equation

»  10%u
c? Ot?

The amplitude u has physical interpretation as the vertical displacement of
a membrane, which we assume to be circular in shape and clamped down at
radius a. We use polar coordinates so

u=u(r6,t)
The boundary condition at the rim is
u(a,6,t) =0

We also require that «(0,6,t) is finite (bounded). A further boundary con-
dition is that the amplitude is a periodic function of 6

u(r,0,t) = u(r,0 + 27, t)

We are now ready to find particular solutions to the wave equation using the
method of separation of variables

u(r,6,t) = R(r,0)7(t) = p(r)T(6)7(t)
The first step is to find 7(¢). We have

V?R _ T Y
R 2T

giving
7(t) = Asin(Act) + B cos(Act)
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R 10R 10°R
I+ 4 NR=0
or? +r6r +r2692 *

We now substitute R = pT" and rearrange

sz”+rp'+)\2r2p_ T"_ -
= —— =n" = const
p T

We have
T"+n’T =0
T(0) = B cos(nb) + y(sin(nh)

and the periodicity condition requires that n is an integer or zero. We are
left with the equation for p

2" +rp + (N2 —n?)p =0
with general solution
p = CJn(Ar) + DY, (Ar)

Since p is required to be bounded at r = 0 we must have D = 0. The
eigenvalues A can then be determined by the requirement that

Jo(Aa) =0

where a is the radius of the membrane. It can be shown that the Bessel
function J,(x) has infinitely many zeroes for each value of n. We define a,,;
as the 7’th positive zero of the Bessel function of the first kind, of order n.
The allowed values of A are then

Oni

)‘m' =

a

We conclude that the vibrating string admits solutions on the form

Oni T Qupict Qupict
u(r, 0, ¢) = Jn( a

)[B cos(nB) + +sin(nB)](A cos(

B
. ) + B sin( .

)
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Each value of n and ¢ gives rise to a different frequency

Qpict

w =
a

We show in the Maple worksheet at
http://www.physics.ubc.ca/ birger /n312124.mws (or html) how one can com-
pute the different frequencies and visualize the different modes.

The coefficients A, B, 3, can in principle be determined by initial conditions.
In the case of the vibrating membranes one is typically more interested in de-
termining the different modes and associated frequencies. We will next time
show how one can find a complete solution in the case of a heat conduction
problem.

5.5 Heat equation in cylindrical coordinates
LAST TIME

e Discussed the vibrating membrane.

e Identified, using the method of separation of variables, the different
eigenmodes of the membrane and found the associated frequencies.

e Showed, using Maple, how the frequencies could be computed and the
modes visualized.

In the case of the vibrating membrane, we were most interested in the prop-
erties of the individual modes of vibration, and not so much in constructing
a complete solution from initial value conditions.

TODAY
We wish to work out in detail the complete solution to a boundary/initial
value problem of a three dimensional heat equation problem.

Before we proceed we need to establish some more properties of Bessel func-
tions. Some time ago (sections 3.5and 4.5) we discussed the regular Sturm-
Liouville problem

@ (50)%2) — a(r)or) + Np(r)o = 0
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where s(r),q(r),p(r) are known functions, and the eigenfunctions satisfied
homogeneous boundary conditions

dcb( )

r
|r left — =0

d¢(7’)

aright¢(n) - right7|r:right =0

Qeptd(n) — brepr——

and showed that the eigenfunctions satisfied orthogonality relations
right
[ drp()en(r)om(r) =0, X2 # X2,
left

We note that Bessel’s equation

Tom) 10y e ) =0

dr? rdr r

Can be rewritten on the ” Sturm-Liouville form”

D098y 4 (e~ ) =0

dr r
with the weight function p(r) = r. Because of the singularity in Bessel’s
equation at r = 0, eigen-value problems with this equation are not of the
regular Sturm-Liouville type. Nevertheless, it can be shown that the Bessel
functions satisfy the orthogonality relation

[ rdr g (B2 g
0

a a

Oén]'T

) =0

if i # j and where (as in the previous lecture) ay; is the i-th zero of J,(z).
Note that the orthogonality relations only hold for Bessel functions with the
same n!

There are a number of relationships that can be proven using the power
series expansion for the Bessel functions and the differential equations ( A
good source for the properties of Bessel functions is Abramowitz and Stegun
[1965]). In what follows we will need some definite integrals over Bessel
functions of order n = 0

/a rdrJo(
0

QT CL2

) = —Ji(ani) (25)

a Qp;
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2

[ rdr (20 = ) (26)

0 a

EXAMPLE PROBLEM

Heating of a roast.

We idealize the roast as a cylinder of height b radius a. Initially the roast
is at the temperature 7. It is put in an oven with temperature 77 and
we assume this gives rise to the boundary condition that the surface of the
cylinder is kept at the fixed temperature 7;. This is not very realistic -it
would be better to assume the convective boundary conditions of section 4.4.
In order to avoid complications we adopt the simpler boundary conditions.
The steady state temperature is 7' = T} and we put

U:T—Tl

for the difference between the actual and steady state temperature. Mathe-
matically, we wish to solve the heat equation

10u

2 _
Vau(z,rt) = - Bt

where for reasons of symmetry we do not expect the temperature to depend
on the angle 6. The solution is subject to the boundary condition

u(0,7,t) = 0; u(b,r t); u(z,a,t) =0;
and the initial condition
u(z,r,0)=A=Ty— T}

We next attempt to solve the problem by the method of separation of vari-
ables and look for particular solutions on the form

u(z,r,t) = R(z,r)7(t)

We find
T = const. exp(—a’kt)
R 10R O°R

IR I R=0
v 8r2+r8r+622+a
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We next separate the variables again putting

R(z,1) = Z(2)p(r)

We find - .
SEH1E+a? d*Z
dr? r dr _ — A2
p ——Zdz2—7 = const
and 27
2
— Z =0
dz? +

with general solution
Z = Asin(yz) + Bcos(yz)
The boundary condition at z = 0 gives B = 0 while the boundary condition

at z = b gives for the eigenvalue ~y

mm
= —; =1,2..
f}/ b ) m Y

and the eigenfunctions are

mnz

b

Z = const. sin

We recognize the equation for p

d’p 1ldp ,  mim
@ Ty T

as Bessel’s equation with n = 0. Writing

And find (since p must be bounded for » = 0)
p = const.Jo(Ar)
The boundary condition ar r = a requires that
Qo

A= 2
a
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where as before ayg; is the location of the i’th zero of Jy(z) and i = 1,2...

Collecting terms we write

Q. . ,mmz Q'

) sin(——) exp(=k[(—=)" + (5)°]t)

a a

’U/(Z,’f’, t) = ZﬂszO(

The next step is to find the coefficients (,,; from the initial condition

Qo . MTZ
A =3 Bridol Z ) sin(— =) (27)
We multiply both sides of (27) by
. NTZ
SID(T)

and integrate over z from 0 to b using

b
/ dz sin(mﬂz) sin(%) = 5nmé
0 b "2

To mark that n has to be odd we put
n=25—1

to get
2A

1 QT
The final step in calculating f2;_1; is to multiply both sides of (28) by

(%))}
Jo(=2
(=)

and integrate from 0 to a using (25)and (26). We get with
Bji = Baj-1,

The final result is
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B 8A
71'(2] — 1)J1(a01)a01

Bj;

00 27 1 s e
u(z,rt) = 3 Bﬂjo(a:r)sm(( ! b )ﬂz)e—k[(%’) +H(BIFHE) 1
Jl=1

Numerical results follow on the Maple worksheet at
http://www.physics.ubc.ca/ birger/p312120.mws (or .html)

5.6 Properties of Bessel functions.

LAST TIME

we worked our way through a boundary value heat conduction problem us-
ing cylindrical coordinates. The solution made use of some of the known
properties of Bessel functions.

TODAY
We wish to prove formally some properties of Bessel functions.
In sections 5.3 and 5.4 we made use of the fact that solutions of the differential
equation ,

rz% + r% + (N2 —=n?p=0
could be written as functions of the product Ar. To show that this is allowed
we introduce the new variable

T =A\r

and define the function

J(z) = p(r)
(same value different functional dependence)
We note that

d?p d*p d*J
20°P _ 2.2 _ 20
T T aowe T de?
dp dp dJ

r—=Ar——=

dr - Cdz
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The differential equation for J is thus

which shows that we can write J as a function of the single argument x.

POWER SERIES EXPANSION OF J,(z)
Many of the formal properties of Bessel functions can be obtained from their
power series. In lecture 23 we argued that for small values of the argument

In(z) o 2"

It is therefore tempting to look for solutions of the form
(o)
Jo(z) = 2"(co + a1z + c22” -+ + ep™ ) = 2™ Y cpa™
m=0

to Bessel’s differential equation. We find

d2 N d -\ oo
z? dai + xd—{c —n?J, = mz::(] cm™ M [(n +m)(n+m — 1) +n +m — n?
P In(z) =3 ™ =Y g™
1=0 m=2
We thus find 27 i
2 n n 2 2
e + (2% —n®)J,
=" (co 0+ cz((n+1)°=n’) + > 2™ (((n+m)* — n®)em + cm2)>
m=2

We demand that the terms multiplying each power of z should separately be
zero. We conclude that ¢y can be chosen arbitrarily

C1 = 0
and that for m > 2

Cm—2
m = ——————— 29
¢ m(2n +m) (29)
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We first note that since ¢; = 0 Equation (29) implies that ¢,, = 0 for all
odd values of m. For even values of we can use the recursion relation (29) to
express ¢, in terms of ¢q. For example

g = —F—=
27 2(2n + 2)
—C2 Co
Ca = =
T 4n+4)  2-42n+2)(2n+4)
and in general
_C)a
m = i+ D)(n+2) - (n+m)
It is conventional to choose )
2

Cop =

This gives us the power series expansion for the Bessel function of the first
kind

CymPn

m!(n +m)!

In "Z

m=0

a result which agrees with one stated without proof in section 5.3.

CONVERGENCE
In order to check if the power series for .J,,(x) is convergent we can use the
ratio test of section 1.4. We have

.’L‘2

T Am+1)(n+m+1)

m—+2
T +Cm+2

" Cm

For any finite x the ratio will always be less than 1 if m is large enough. The
series is therefore convergent for all finite values of x.

FORMULAS FOR DERIVATIVES
The power series formula for the Bessel functions can be used to derive a
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number of exact relationships between functions of different order.

example let us consider the derivative of Jy(z). We have

N i Vi
m=0 m'm'
d i _ mflm( )2m 1
d:L“ m!im!
Introducing the new ”dummy 1ndex” kE=m — 1 we find

d —1>’“<£>k

x ( 2)
@) =3 kz:% P TR

Hence

d
%Jo(ﬂf) = —Ji(z)

A further example is

d n n
@ (@) = " s (@)

To prove this let us note that the left hand side can be written

d & (CDPEPEm & (g
2%3::0 ml(n+m) mz::[] m!(n+m — 1)!

q.e.d.

A special case is
d
@(Q:Jl(x) = zJo(z)

We can use this result to evaluate

Qo; ,
/0 Jo(z)zde = xJ1(2)|g" = aniJ1(coi)
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where ag;is the i—th root of Jo(z) = 0. This is a result which we used in
section 5.2.

SUMMARY

We have derived a power series expression for the Bessel functions of integer
order. This formula was used to derive a number of relationships between
Bessel functions and their derivatives. It is not too difficult to derive many
other such relationship.

PROBLEMS

Problem 5.6:1
Using the infinite series representation for the Bessel function verify that

d —n _ —n
12 (@7 n(2)) = 27" o (2))

5.7 Separation of variables in spherical coordinates

LAST TIMES
Solved boundary value problems in cylindrical and polar coordinates.

TODAY
Consider similar problems in spherical coordinates.
The Laplacian in spherical coordinates can be written

10, ,0u 1 0 ou 1 d%u

2or” o) T smaae %) T EanTe 00

Vu =

Typical boundary value problems that we wish to be able to solve are on the
form

Viu = —\u
arising from either the heat or wave equation, or
Vu =0
from a potential problem in a source free region, or

Viu = g(7)



from a potential problem with sources. The general problem is notationally
rather complicated. The choice of using spherical coordinates is often mo-
tivated by a problem where for reasons of symmetry the solution does not
depend on all three coordinates 7,6, ¢.

EXAMPLE
”Spherical roast”
We wish to solve Lo
u
Viu = —— 30
"ot (30)

Suppose that for reasons of symmetry, we know that v = u(r, t) depends only
on r and ¢, not on # and ¢. We wish to solve the following boundary/ initial
value problem

u(a,t) =0, u(r,0) = f(r)

With the symmetry assumption the Laplacian simplifies to

10,00

2 — N
Viu = r20r(r 87’)

We attempt to find solutions to (30) be the method of separation of variables

u = p(r)T(t)



We find )
D - id_T ——)\=0
P kT dt
We have
7(t) = const.e™F
while the differential equation for p is
d’p  2dp
— S+ E A =0
dr? * rdr AP

This equation simplifies if we make the substitution

R(r)
’
We find 2R
A NR=
dr? +

with solution

R(r) = Asin(Ar) + B cos(Ar)
giving
1
p(r) = =(Asin(Ar) + B cos(Ar))
r
We require that p is bounded at » = 0, hence B = 0. We also require that
p(a) =0, giving

nmw ,
A= —, n =integers
a

Combining terms we write the solution to our boundary value problem

o0

o, . nar n’mlkt
u(r,t) =Y - Slﬂ(T) exp(— 2 )
n=1

The coefficients «a,, can be determined by the initial condition

Fr) =Y Trsin(=0)
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giving

nmr

2 ra
Qay = —/ rdrf(r) sin —
0 a

We now apply the method of separation of variables to the slightly more
complicated problem of finding solutions to

Viu = \u
which depend on r and 6 but not on ¢. In this case the Laplacian becomes

Viu = 10 200 L 0 sin 9@

r28r( or +r251n909( 89)

We attempt to find solutions on the form

u=p(r)T(0)
We find
1.d ,dp. 4., Lod . dT
plar” d)+”] “Temo g 0gg) = v = constant

The differential equation for p is
d ( 2dp
dr* dr

The solution this equation are called spherical Bessel functions and their

properties will be discussed in section 5.8.

)+ 72X —vp =0

The differential equation for T’

T
jo(smefl—e) +vsinfT =0

becomes somewhat easier to handle if we use z = cos@ rather than 6 as
independent variable. Let us write



We have

% _ — Sin 9
ar_ _ sin 9@
dé dz
d dT dT d*T
@(sin 9%) = Cos 9@ + sin QW
d*T dy . d*ydz dy ., d%*
T —0059@ — s1n9@% = —0039% + sin 9@

Substituting these results into the differential equation gives

d? d
sin® Od—z — QSinﬁcosﬁd—y + vysinf =0
x T

Dividing both sides by sin 6 gives rise to Legendre’s differential equation

d? d
(l—xz)d—:fé—Q:pﬁ—i—uy:O

The differential equation is singular at £ = £1. We shall require that the
solution is nonsingular at both = 1 and = —1. We shall see in the next
lecture that this is only possible for some values of v and gives rise to an
eigenvalue problem.

PROBLEMS

Problem 5.7:1
a:
For what values of the constants a and b will

u(r,t) = t* exp(—ar?/t)
be a solution to the two dimensional heat equation

ou

2 _——
Vu_kat
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in polar coordinates.
b:
For what values of the constants a¢ and b will

u(r,t) = t* exp(—ar?/t)
be a solution to the three dimensional heat equation
0
2, — 9%
kot

in spherical polar coordinates.

Problem 5.7:2

a:

Find solutions to the three dimensional wave equation

1 9%u(r,t)

2 ot?

with no angular dependence satisfying the condition that u(r,t) is finite at
r =0 and

Viu(r, t) =

u(R,t) =0
b:
Show that the three dimensional wave equation is satisfied by

u(r, 1) = ~(8(r — ct) + % (r + ct))

for arbitrary functions ¢ and v as long as they can be differentiated twice
with respect to their arguments.

c:

What are the restrictions on ¢ and ¢ in part b: for the solution to be bounded
(< 00) at the origin r = 0 for all times.

5.8 Legendre polynomials. Spherical Bessel functions

LAST TIME
Considered the partial differential equation

VZiu+4+ Nu=0

161



in spherical coordinates (r, 6, #). We assumed that the solution could depend
on r and @, but not on ¢, and attempted to find solution by the method of
separation of variables:

u = p(r)T ()
This procedure lead to the differential equation for T’
d aT
@(sin 9@) +vsinfT =0

where v was a separation of variables constant. We argued that this equation
became easier to handle if we introduced the new independent variable

z = cosf

We defined y(z) = T'(#) and derived Legendre’s differential equation

a2 d
(1—x2)d—ag —21‘%—1—1@:0 (31)

We next attempt to solve (31) by making a power series expansion

(o0
y=> a™
m=0
We have
d?y e >
i > ann(n — 1)z ? = Y amia(m+2)(m+ 1)2™
T n=2 m=0
d?y s
_p22 = — Z amm(m — 1).’L‘m
dxz m=0
dy >
—2r—= = — Z 2ma, ™
dzx 0 "
vy = > vapz™
m=0

Substituting into the differential equation and collecting terms we find

i 2" [ami2(m+2)(m+1) — ap(m(m —1) +2m —v)] =0

m=0
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This equation must hold for all . This gives us the recursion relation

m(m+1) —v
Amt2 = Am 32
2T m+2)(m+ 1) (32)
If we specify an initial value of y
ag = y(0)
equation (32) will allow us to compute ag, a4, ag---. Similarly, if we know
the value of dy/dz at © =0
dy
a1 = — r=
1= g le=0
we can use the recursion relation to determine as, as - - -. The general solution

to Legendre’s equation (31) can thus be written
y(z) = apb(z) + arc(x)

where b(z) is an even function of x, b(xz) = b(—=z), with only even powers of
r in its power series expansion. The other term ¢(z) is an odd function of z,
(¢(z) = —c(—)), with a power series expansion with only odd terms of z.

Will the power series expansion that we have found be convergent?
We notice that for large values of m we have

Am+2
Am

=1, asm — o0

hence the radius of convergence of the power series is x = 1. If we require
that the solution y(z) be nonsingular at © = +1 the series must break off so
that y becomes a polynomial of finite order!.

If we choose v = n(n + 1) where n is an even integer the even series will
break off at n and

Ap42 :an+4"':0
and if n is odd the odd series breaks off after n. The condition that the

solution should be non-singular at * = +1 thus gives us the eigenvalues
v =n(n+ 1) with the polynomial solutions as eigenfunctions.
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Legendre polynomials

n=0
1
n=2 n=1
n=3 n=4
O,
-1 0 1
X

It is conventional to label the Legendre polynomials which are solutions to
Legendre’s equation as P,(z) and to normalize them so that P,(z =1) = 1.
From the recursion relation (32) it is easy to show that

Py(z) =
Pi(z) =

Py(z) = =(32* — 1)

1
2
L. 3
P3(z) = 5(5.’1)‘ — 3z)

We next note that the differential equation (31) can be rewritten

d dy
1— —
Ia <( x)dx>+uy 0

which is on the Sturm-Liouville form (section 4.5)

d dy

- (s(@)22) + Nopla)y = 0
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with p(z) =1, s(z) =1 — 2%, v = A2 = n(n + 1). It can be shown that the
Legendre polynomials are orthogonal i.e.

1
/ dzP,(z)P,(x) =0if n #m
1
One can also show that with the normalization that we have chosen
1 2
/ dzP,(z)? =
1

2n+1
As an example let us evaluate

(33)

1 11 2
/ dzPy(z)? = / dz=(32° —1)> ==
—1 -1 4 5

in agreement with (33).
The Legendre series can be used to expand an arbitrary function f(z) defined
for 1 < x <1 can be expanded in a Legendre series

f@zi%mm

on =" [ f@) Py

In the Maple worksheet
http://www.physics.ubc.ca/ birger/p312leg.mws (or .html)
we discuss further some of the properties of the Legendre Polynomials.

SPHERICAL BESSEL FUNCTIONS
When we separated the variables

u = p(r)T(6)
in
Viu = \u
(section 5.7), the differential equation for p was shown to be

— (=) + 12X —n(n+1)p=0
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Spherical Bessel functions of the first kind

The solution to this equation can be expressed in terms of spherical Bessel
functions. To see the relation to Bessel’s equation we make the substitutions
x = Ar and

After some algebra we obtain

d’R dR 1
2 2 2
which is of the same form as Bessel’s equation of half integer order (section

5.6)! It is customary to define the spherical Bessel functions of the first kind

as
. T
Jn(z) = \/ %Jn-l—l/Z(x)

and the spherical Bessel functions of the second kind as

Yn(T) = \/%Ynﬂ/z(x)

These functions can actually be shown to be trigonometric functions multi-
plied by rational functions. j,(z) is well behaved near = 0 while y,(z) is
not. In the Maple worksheet
http://www.physics.ubc.ca/ " birger/p312leg.mws (or .html)

we discuss some of the properties of the spherical Bessel functions. The
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spherical Bessel functions satisfy orthogonality relations, just as the Legen-
dre polynomials, and we can expand an arbitrary function in spherical Bessel
functions.

SUMMARY

e We have solved Legendre’s differential equation by making a power
series expansion.

e The requirement that the solution be nonsingular gave rise to the eigen-
values v = n(n + 1) where n is an integer.

e We found a simple recursion relation which allowed us to compute the
Legendre polynomials.

e We showed that the Legendre polynomials were orthogonal and we
argued that an arbitrary function f(z) defined for —1 < z < 1 could
be expanded in a Legendre series in much the same as it could be
expanded in a Fourier or Bessel series.

e We also discussed briefly spherical Bessel functions.

Our next step in separating the variables in spherical coordinates would be
to consider cases where the solution depends on all three coordinates r, 8, ¢.
We will not have time to do this, so if you need the solution you will have to
look up spherical harmonics and associated Legendre polynomials in e.g. the

books by Riley et al. or Arfken and Weber.

6 Fourier transforms

6.1 Fourier integral
SOME TIME AGO (section 4.3)we

e Introduced the complex Fourier series.

f(-T): Z Cnei27rnw/a

n=—oo

1 o .
Cn = _/ f($)e—z27rnx/ad$
aJo
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e showed by examples how Fourier series coefficients could be evaluated
by Maple.

e made some comments about convergence.

TODAY
e Change range to —a <z < a

e Consider Fourier integral as limit of series as a — oo.

f(x)

< 2a

Let us first consider some consequences of taking the limit of infinite range.
When we make a Fourier series expansion with in the range —a < =z < a
we replace the function outside the range by its periodic extension. This is
harmless, if function falls off rapidly for large a, and we are only interested
in what happens inside the range —a < * < a. We now wish to consider a
non-periodic function f(x) which vanishes for large |z|. the Fourier integral
18 the limit of its Fourier series as a — 00

COMPLEX FOURIER SERIES —a < z < a.
It is convenient to make the range symmetric about origin and let the period
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be 2a. The complex series expansion becomes

f(-T): io: Cnei'/rn:c/a

Cp = L dz f(a:)e_"mx/“
2a J-a

We now:

e replace n by the new variable

A="0
a
e note that A changes by
Arx="
a

when n is incremented by one.

e Replace sum over n by integral

o[

Our final step is to define F/(\) as

F(\) = 2ac,

and take limit a — oco. Get

—00 27
F(\) = /_ O:o f(z)e M de

COMMENTS ON NOTATION
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e When z is a spatial variable A is a wave — vector and the symbol k or
q is commonly used.

e When z is a time A is a frequency and the symbol w is often used with
the opposite sign.

e Some people prefer symmetric form in which both integrals have pref-

actor 1/4/2m.

e Others put the prefactor % in front of the second integral not the first.
Our notation agrees with the one used by Maple.

e F(A) is called the Fourier transform of f(x).

SINE and COSINE TRANSFORMS
Recall that .
e ™ = cos(\z) — isin(\z)

Assuming that f(z) is real we find for the real and imaginary part of F())
of F()\)

RE(N) = AN = /O:O f(z) cos(Ax)dx
IF(A) = —-B(\) = — /o:o f(z)sin(Az)dx

If we substitute .
et = cos(Ar) + i sin(Az)

into expression for f(z) get

1

™
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Again we note that different authors places the factors of 7 differently in the
transform integrals.
Note that

AQA) = A(=X)

B()\) = —B(-))

The sine&cosine transforms most useful if f(z) is either an even or odd
function of . In the former case B(A) = 0, in the latter A(A) = 0.

Can also consider functions defined for
O<x<0

Then the sine transform is the odd extension, while the cosine transform is
the even extension.

We illustrate this by some examples in the Maple worksheet at
http://www.physics.ubc.ca/ birger/p31217.mws (or .html)

SUMMARY
We

e introduced the complex Fourier integral and transform
e defined the Fourier sine and cosine transform
e did this by taking the limit a — oo for the period of the function

6.2 Dirac J— function. LRC-circuit with non-periodic
forcing

LAST TIME
e Introduced the Fourier transform

e We also used a Maple worksheet to work out some examples.
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TODAY
e As an example discuss the LRC-circuit with non periodic forcing.

e First make a detour to discuss the Dirac é—function.

DIRAC §—FUNCTION
Suppose a function f(z) has the Fourier transform

FO = [ 7 fla)e Mda

—0o0

Substitute F'(\) into the Fourier integral

fW) =5 [~ FOyevan

:g -

get
fly) = /o:o f(a:)da:% /O:O AN y—2)

The last integral on the right hand side is not mathematically well defined,
unless we specify more carefully how to take the limits of integration.

The problem is that when substituting F'(A) we also changed the order of
integration-an operation which is not always mathematically legal.

Being physicists not mathematicians we ignore this.

Define the Dirac é —function

1 o
Sy—z) = Py /_oo d\eMv—2)

d(y—) is strictly speaking not a function since the integral is not well defined
except under the integral sign where it has the property

[ dw i@ty —2) = £ ()
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for any arbitrary function f.

To see why this works let is imagine that the Fourier transform of a function
f(z) has the property that F'(A) =0 for |A| > A.

1

T on

f) =5 [ F)ear

Substitute into o .
F(\) = / flz)e Mde

get
00 1 A )
Fw) = [ faydas- [ dre?v=)

which is can be evaluated. Define

1A
oy —z) = Py /_A d\erv—2) —

™

sin(A(y — )
m(y — )

and consider the §—function as limit
é(z) = Alglc;lo oa(x)

It follow that the §—function is even

The procedure is illustrated on a Maple worksheet at
http://www.physics.ubc.ca/ birger/p31219.mws (or .html)

LRC CIRCUIT REVISITED

d?q dg 1
With
t q
T=—F7=, Y= =
Jic' !¢
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f(t) L

C
F(r) = V(D20 = B/ =

The differential equation in the new variables was

d*y dy
—_— 2 —_— =
oty F(7)

NON PERIODIC FORCING
Fourier transform the forcing term

Fw)= [ f(r)emdr
where the forcing terms is given by the Fourier integral
1

f(r) = o

We assume that the solution has the Fourier integral

/OO F(w/)eiw’rdwl

—00

() 1 /ooy( I) iw’rd !
T)=— w)e w
y 2w J—oo

Substituting the Fourier integrals into the differential equation:

/ dw'(—(w')? + 2iaw’ +1)Y (w')e™'™
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_ / dw/F(w/)eiw’r

Multiply both sides by

1
—e
27

and integrating over 7 using the properties of d—function,

—iwT

1 foo , ,
5 o :_/ d\ IAN(w—w')
(w—w) o | 4
we find
F(w)
—w? + 2iaw + 1
which has to be substituted back into Fourier integral.

1 /oo Qi F(w)

~ o —oo —w? + 2iaw + 1

Y(w) =

y(7)

To get further we need to specify the forcing function f(7). In some cases the
integral can be evaluated analytically using the method of residues from the
theory of complex variables. For numerical work the fast Fourier transform
method is usually more convenient than numerical integration of the Fourier
integrals.

SUMMARY
We have

e defined the Dirac d—function by a limiting procedure.
e found that §—function only well defined under integral sign.
e Used Fourier transformation to analyze an LRC circuit with non peri-

odic forcing.

6.3 Heat conduction in semi- infinite and infinite me-
dia.
LAST TIME
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e Continued our discussion of Fourier transforms and discussed the Dirac
0 —function.

e Discussed, as an example, the LRC-circuit with non-periodic forcing.

TODAY
Consider some more applications of the use of Fourier transforms.

PENETRATION OF SEASONAL HEAT FLUCTUATIONS INTO SOIL
Soil is a poor conductors of heat, hence seasonal fluctuations in surface tem-
perature do not penetrate more than a few meters down. We illustrate this
by considering the following idealized problem:

Assume that the surface of a thick layer of soil is exposed to the elements
and that the temperature at the surface varies as

T = T() + T1 COS(UJt) = TO + T1§R6iwt

where w = 27/lyear, and the symbol R stands for real part. We also as-
sume that deep down (deep here means more that a couple of meters) the
temperature is approximately constant and equal to Tg.

We assume that the climate has stayed the same for a sufficient number of
years that the temperature fluctuations to be proportional to 7;. Define

u(z,t) =T(x,t) — Ty
where x is depth below the surface. We look for a solution

u(@,t) = R(p(z)e™")

and find )
tw
¢ = "0
Noting that
Vi + 142

V2

we find
umt) = Mo epl-o ;_k)eXp(i(wt_x ;_k))+czeXp($ ;_k)exp(i(wtw\/%))}
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We assume that v — 0 for large  hence we must have co = 0 and find

T(z,t) =Ty + Ty exp(—x,/;—k) cos(wt — x ;—k)

We notice that as the heat penetrates deeper into the soil there is a phase

lag so that at a depth
|2k
T =m—
w

the coldest time is the middle of the summer! However, at such depth the
temperature fluctuations are severely damped.

INFINITE ROD

No rod is, of course, infinitely long, but sometimes from the point of view of
what happens near the center, the effects of the endpoints can be neglected.
As an example let us solve the following problem:

Solve
Pu(x,t)  10u

x> kot
subject to the initial condition

u(z,0) = f(z)

is a known function with Fourier transform
F()) = / dz f(z)e (34)

Also, assume that u(z,t) is bounded i.e. stays finite as x — +oo0.

The solution to this problem is (as can be seen by substitution into the
differential equation, and noting that the boundary condition is satisfied)

© d\

u(a',t) = / SCF(A) exp(— A%kt + iAa)
—oo &T0

We substitute (34) back into the integral to get

u(x',t) = /o:o dz f(x) / % exp(— Akt — iX(z — 2'))

o0
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The integral over A can be carried out analytically, and it can be shown that

% d\ ) o1 —(z — 2')?
/_oo o exp(—Akt —idx') = e exp( ype )

The resulting function is a Gaussian with variance
o? = 2kt

that grows linearly in time. The width of the Gaussian is proportional to the
square root of the variance. Hence, the width spreads as the square root of
the time. The solution to our problem can be expressed as the convolution
integral

1 ) AW
U(.’L‘I,t) = \/m/oo d.’L‘f(.’L‘) eXp(_%)
SUMMARY

e We have concluded our discussion of the one-dimensional heat conduc-
tion problem by considering heat conduction problems in semi-infinite
and infinite media.

e In both cases the absence of a finite boundary simplified the problem,
and we could apply Fourier methods fairly directly.

e In the case of the infinite medium we found that a Gaussian convolution
integrals played a fundamental role.
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