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Introduction

In this project I attempted to calculate bound state energies for colour centres found in typical
ionic crystals. A Colour centrer occurs when a negative ion is removed from an ionic crystal.
Charge neutrality is normally conserved in through 2 processes. Either the addition of a negative
ion interstitially in the lattice (Frenkel defect) or, through removal of a positive ion (Schottky
defect). A third process however, can occur. In the vicinity of the defect there is a build up of
positive charge as the hole is surrounded by positive ions. It is possible for an electron to
become bound to this area of positive charge in much the same way as an electron is bound to a
nucleus. These are called F-centres and they can then have their own energy states which occur
inside the band gap. These new electronic states can allow adsorption and emission of light at
visible wavelengths and thus can add colour to normally colourless transparent crystals.!")

1.0 Electronic Structure of ionic crystals
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Figure 1-1: Transition of Band Structure from a covalently bound semi conductor on the left through an ionically
bound insulator in the centrer to a mono-atomic metal on the right.™

If we consider a crystal of atoms of differing types then we get a typical band structure. As the
atoms in the crystal become more and more dissimilar the electron involved in bonding the two
atoms together will be more and more attracted to the atom with a higher electronegativity. As
the bond becomes increasingly polar the band gap widens and the band widths become narrower
as the two atoms interact less with each other. As you reach a state of maximum polarity in the
crystal the electron can be considered bound to one of the atoms,leaving the other atoms outer
shell vacant, producing a lattice of positively and negatively charged ions.”



1.1 Tight Binding Calculation of NaCl structured ionic crystals.

The elements from opposite ends of the periodic table tend to form ionic crystals. I will limit my
discussion to the Alkali Halides which tend to have a NaCl crystal structure. This method should
also be valid for the II-VI oxides such as MgO as well.
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Figure 1-2: NaCl structured lattice with positive ion sites ¢ and negative ion sites d.

I will treat the lattice as a square lattice with a basis of 2. The Positive ion will be the c site
located at (0,0) and the negative ion will be the d site located at (Y2 ,'2). The lattice vectors are
shown in Figure 1-2 and have a length of v2a. The vectors R. and Ry point to lattice sites ¢
and d respectively. They are represented by
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where ny and ny are integers corresponding to lattice points in the crystal. Let the crystal have N?
lattice points with N points along each side. We can define a reciprocal lattice vector.
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The first brillouin zone is will be square. By applying Born-von Karman boundary conditions to
our NxN lattice ky and ky become quantised to the following values.
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The strongly localized electrons in the system make the tight bonding model an ideal candidate to
describe the system. Ionization of the crystal is caused by the d atom having a much lower on
site energy than the ¢ atom so we will define the d on site energy to be 0 and the ¢ on site energy
to be Eo. If we confine hopping terms to nearest neighbours then hopping occurs between the ¢
and d sites only. We can now apply the low energy approximation from class, and ignore all
states except those close to the Fermi energy.”’ Hopping will then only occur between the ¢
atoms s' shell and the d atoms p° shell. Through symmetry we expect an electron to hop between



the s shell and only one of the 3 p shells as the other two are orthogonal and will give 0 matrix
elements.”’  As hopping in x and y directions should be of the same magnitude we can treat the
hopping as occurring between 2 s orbitals. Additionally we can ignore spin in this problem as our
Hamiltonian does not contain any operators which act on spin. We can now write the Hubbard
Hamiltonian as

Ho=Y Eoc'(R)c(R) rzz (R+8)d(R)+d (R+68)c(R)) (1.4)

n.n,

O represents the 4 nearest neighbours atoms at (n.,ny), (nx +1,ny),(n,ny,+1) and (nct1,n,+1). We
can Fourier transform the creation and destruction operators as follows.
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which gives us our Hamiltonian in k-space.
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Now the sum over & is an important quantity as it appears later in in our calculations as well.
With at little bit of algebra and some trig identities we can get the following relation.
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When we put Ho into the time dependant Schroedinger's equation we get the following coupled
equations to solve for
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Diagonalizing this matrix gives us the energies of our lattice.

Ek:

% Eoi\/E02+64t20052(%kx)cosz(%ky)) (1.9)



We clearly see two bands appearing. This splitting is dew to the difference between the two
atoms in the basis of the lattice. When the off diagonal elements of a matrix like the one in eq
1.8 are much smaller in magnitude than the difference between the diagonal elements we can
treat this problem in perturbation theory, as discussed in chap 1 of Harrison.”) Essentially we
expand the square root in terms of t/Eo and keep only the first two terms in the expansion. The
result is a much nicer equation for the energy of the conduction and valance bands.

E¢=FEo+Eocs, t a a
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this gives us a band gap of Eo and a band width for the conduction and valance bands of 16t*/Eo.
Generally the conduction band is around 1/10 the width of the band gap so our expansion in g is
a good approximation.*
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Figure 1-3 right: band structure of 2D NaCl crystal for 1:10 band width:band gap ratio
left: 3D representation of the conduction band for the same crystal

Now we substitute our values for the energy bands back into equation (1.8) and solve for the
eigenfunctions of the system
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We can see from these eigenstates that as € is small the election is mostly centred on the c site
when in the conduction band and on the d site when in the valance band. The Fermi energy
exists in the band gap so the valance band is full and the conduction band empty thus all the
electrons are on the d sites as expected in an ionic crystal.

1.2 Greens Functions of Ho
The first step in determining colour centrer bound states is to calculate the greens function of the

unperturbed system then we can used these functions to determine the green's function of the
true Hamiltonian with the F-centre defect added.



The greens function as we have seen in class is a very useful quality as it's poles correspond to
the eigenenergys of and it's residue corresponds to eigenstates of the system. The greens function,
for our unperturbed Hamiltonian Ho, for a particle initially at site n travelling to site m is
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where n and m are lattice vectors as described by equation 1.1 and k" and k™ are the eigenstates
described in equationl.11. The y v indices are to differentiate between the ¢ and d sites in the
basis. It will be useful for later derivations to have these greens functions written in full.
Excluding the summation there are 8 terms on the RHS of this equation for the 4 different
combinations of ¢ and d sites in the valance and conduction bands. There are 4 possible greens
functions depending on which atoms n and m point to. If we Fourier transform the vectors to
reciprocal space we see that only 2 terms give non 0 results for any choice of ¢ and d. The 4
possible greens functions are given below in full.
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The greens functions are real when E is in the band gap. This is expected as there are no bound
states in the band gap. This also means the in term is unnecessary as it was only added to help
integration around possible poles. I shall discuss methods of calculating these functions later.

1.4 Greens Function of a Colour Centre
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H:H0+V=Ho+t26:(dT(O)C(3)+CT(5)d(0)) (1.14)

When we have a Hamiltonian of this type we can use Dyson's equation to determine the full
Green's function of our system in terms of the greens functions of the unperturbed system. This
was done for a 1D mono-atomic chain in our notes™ Dyson's equation for H is.
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The two different atoms in our basis again give us 4 possible Green's functions. To make matters
worse Dyson's equation is self consistent so at first glance you may suspect that all 4 Greens
function solutions are coupled together. In fact the greens functions are coupled in pairs so we
only need 2 of the 4 functions to calculate our bound states. Consider the Green's function acting
on two c sites.

g (1.16)

We see that Ge(n,m;E) only depends on Gu(0,m;E) and itself. Also, it only depends on it self
when n points to a nearest neighbour atom. Let's rewrite 1.16 substituting n for nearest
neighbours atoms 1 and summing over all nearest neighbours.
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Now we can remove the G term from the RHS of the equation and rewrite the equation as
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We still require Ga(0,m;E). Using equation 1.15 and solving for Gu(0,m;E) we get the
following equation.
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Equations 1.18 and 1.19 form a pair of coupled equations



Our unperturbed green's functions, 1.13, are real inside the band gap therefor the RHS of these
coupled equations are real and finite. We need to find the poles in Ge(n,m;E) and Gu(0,m;E).
What we see is that if the determinant of these coupled equations goes to 0 then the Green's
functions 1.18 and 1.19 will have to go towards infinity to keep the RHS of the equation finite.
Our bound state energies can then be found by solving the following equation

F(E)-H(E)=0
1—t§51 G;’d(S,O)Hl—t; G;C(O,S)}—zZG;d(o,o)[nZa) G;’c(ﬁ,S)}:o (1.20)

1.5 Bound State Energy Calculation for Colour Centrer

The unperturbed Green's function 1.12 is solvable for a mono atomic crystal using Elliptic
integrals.’) However the added complication of 2 bands and more complicated eigenfunctions in
the diatomic case makes this type of solution intractable. Equation 1.20 is not a trivial either.
the H(E) function alone has 16 terms in it. In the end I had to resort to a numerical solution for
this problem.

Looking at the terms for Ge(8,0;E) and Gu(0,0;E) in equation 1.13 we see that the only
difference between them is the sign of the exponential. If you sum over all nearest neighbours
for the positive exponential, the result from equation 1.7 still holds. Both these terms are
identical and F(E) reduces to.
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We expect that the effects of the colour centrer will be fairly localised in the lattice so F(E) may
converge over a finite number of lattice points. The number of points necessary in our
summation was initially estimated by summing over a greater and greater number of lattice
points and observing the change in the function each time. After N = 6 (36 atoms) there was no
noticeable change in the function and our calculated binding energies changed by less than 1%.

Figure 1-5 : Form of function F(E) for different
values of t (Eo =10)

We see from figure 1-5 that increasing t,
increases the value of the function in the
centrer and shifts the minimum values
in the function outwards towards the
band gap. This function is not
asymptotic, it has a finite value of
around 0.35 at the band gap fort=1




and does not seem to change significantly for different values of t. Altering the value of Eo
while keeping the ratio of t/Eo constant only scales the function so it remains finite in the band

gap.

Function H(E) describes hopping of electrons amongst the 4 nearest neighbour atoms around the
colour centrer. The exponential in the G..(0,m;E) term just gives a cosine as the reset of the
greens function is even so we can drop the sin term dew to symmetry. When we do the double
summation we get 16 cosine functions however only 4 of them are unique so the summation just
becomes.
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the H(E) function then becomes
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&k 1s very small so when E is in the band gap the left hand sum will be generally positive and the

right hand sum will be negative. This suggests no solution to 1.20. However, we have seen in
function F(E) that as ex and E — Ex both go to 0 near the band edge the function converges to a
finite number. If this number is positive we can have bound state if it is negative we will not.
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Figure 1-6: Function H(E) for different values of t (Eo =10 ¢eV)



We see from the diagrams that changing t in H(E) can alter it's shape much more dramaticly than
seen in F(E). If we change Eo but keep t/Eo constant then the only effect is a scaling of the y
axis so that the function still fits within the band gap. This function also required a lot more
terms to converge. A N = 16 , 256 atom, lattice was required to give negligible change in the
function and less than a 1% change in our calculated binding energies.

The tail of the H(E) function seems to converge to a finite negative number at the edge of the
conduction band so no bound state close to the conduction band will be found. The tail close to
the valance band however seems to grow asymptotically large as we approach the band edge.
This implies that since F(E) is finite at the band edge we will always have a bound state as the
two functions will cross at some value of E. We see as the coupling between nearest neighbours
gets larger the tail moves farther to the left indicating a larger binding energy. We can solve for
the point when F(E) = H(E) numerically to determine the energy of the bound state.
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Figure 1-7 : Bound State Energies for various coupling constants t and constant band gap Eo = 10 eV

For a 10 eV band gap and a coupling term t = 1 we calculate there to be a bound state at 0.042
eV. Even when t=0.5 we still get a bound state although it is at 0.0024 eV. This is around 27
Kelvin so we expect it to be thermally populated. The binding energy seems to increase
exponentially with respect to the coupling constant. Care must be taken to extrapolate much
beyond t=2 as our approximations based on the small value of t/Eo. Knowing now that we need
to solve for the bound states numerically it would be possible to go back through and calculate
equations 1.13 without any approximations. We could then solve for our bound states exactly.
The exact numbers would be different but the general trend would be similar and with strong
enough coupling our bound state could act on photons in the visible spectrum.

One question remaining unanswered, is whether the new bound state above or below the Fermi
energy. We know there should be 2N? states in the valance band as each site contributes two
states. Near the band gap e is at it's largest. Our eigenfunctions tell us that the states in the
valance band come mostly from the d sites but partially from the c sties as well. By removing a d
site do we loose a state in the valance band or not? The answer to this question will tell us
weather the new bound state we calculated is populated in the ground state and thus weather we
can have transitions to it at low energies. In order to conserve the charge neutrality of the crystal
it should be populated but we made a lot of assumptions so our model may not reflect this.
Density of state calculations are required to determine this.
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