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I.  Introduction 
 

For large conductors, conductance follows Ohm’s Law G= σW/L where G = conductance, σ = 
conductivity, which is independent of the sample dimensions, W = width of the conductor, and L = 
length of the conductor.  Therefore, this law predicts that when L goes to 0, G goes to infinity.  
Unfortunately, G

-1
 experimentally approaches a minimum value of GC

-1 
which will be explained to 

be contact resistance.  A new conductance formula: G = (2e
2
/h)MT where M is the number of 

modes, and T is the probability that an electron transmits through the conductor, is shown to 
produce the correct conductance for conductors of both large and small scales.  In this paper, the 
new conductance formula will be derived along explaining its ramifications to electron energy 
distribution, voltage drop, and heat dissipation across conductors. 
 
 
II.  Ballistic Conductor 
 
A.  Contact Resistance 
 
To discover what is contact resistance, we will examine the setup shown in figure 1.  There are two 
contacts joined by a conductor of length L and width W.  At the contacts, there is an infinite number 
of transverse modes that carry the current, while in the conductor, there are only a few modes.  The 
redistribution of current at the interface is what leads to a minimum resistance called contact 
resistance GC

-1
. 

 
 

 
Figure 1: Setup where conductor is placed between two contacts 
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Figure 2: There is an infinite number of modes in the contacts, but only a few modes in the 
conductor 
 
 
B.  Derivation of Contact Resistance 
 
We will now derive the value of GC making two assumptions: ballistic conductor and reflectionless 
contacts.  For a ballistic conductor, the probability of transmission for electrons through the 
conductor is unity.  If the contacts are reflectionless, there are no reflections of the electrons 
entering the contacts from the conductor, but there is still reflection of the electrons entering the 
conductor from the contacts.  Reflectionless contacts are shown by numerical calculations to be a 
good approximation as long as the electrons are not too close to the bottom of the energy band. 
 

We now look at current when we have apply a bias across the contacts, µ1 on the left contact, 
contact 1, and µ2 on the right contact, contact 2.  The +k states in the conductor will have energy µ1 
and the -k states in the conductor will have energy µ2.  The reason for this is if we apply the same 
energy µ1 on both contacts, obviously the +k and –k states will have the same potential.  Now, let us 
change the potential on contact to µ2.  The –k states from the second contact will have the new 
potential, but the energy of the +k states will not be affected since there is no causal relationship 
between the +k and –k states due to reflectionless contacts.  As well, the current is carried only by 

the occupied states between µ1 and µ2 since the +k and –k states below the lower energy will 
cancel. 
 
 

 
 

Figure 3: Only modes between µ1 and µ2 produce current 
 
 
Notice that for each transverse mode, labeled by N, there is a dispersion relation E(N,k)  with a 
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cutoff ε  = E(N,k=0) below which the mode cannot propagate, like waves in a waveguide.  Hence, 
there are M propagating modes given by ∑ −=

N

NEEM )()( εθ where θ  is the step function. 

 
 
Examining current for a particular mode, 
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where e = electron charge, n = electrons per length, v = electron velocity, and f(E) is electron 
distribution.  The integral is from ε  to infinity since ε  is the lowest energy for that mode. 
 
Now, for more than one mode, current is simply: 
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If M is constant over the bias µ1 to µ2,  
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Therefore, 
 

M
h

e
GC

22
=  

 
 
C.  Step Response and Voltage Drop 
 
We know M, assuming periodic boundary conditions, because the propagating k must be between 
–kf and kf, where kf is the Fermi momentum.  Therefore, for width W, the separation between k 

values is 2π/W, and therefore, 
 



 4 

2/

/2

2

f

f

f

W
M

Wk
M

W

k
M

λ

π

π

=

=

⋅
=

 

 

where λf = Fermi wavelength. 
 
By decreasing the width of the conductor, the number of modes decreases, and we see the contact 

resistance drops in steps of 2e
2
/h as seen in figure 4.  For metals, λf is small; therefore, are many 

modes so when the width changes, there is a negligible change in current.  On the other hand, λf 
can be quite large in semiconductors so we can see experimentally the step behaviour. 
 
 

 
Figure 4: Conductance as a function of Gate Voltage (which controls the width of the conductor) 
 
 

There is no voltage drop across the conductor, but there is a drop of (µ1-µ2)/e across the contacts.  
For the +k states, the +Fermi level, f

+
 , drops at the right contact while for the –k states, the -Fermi 

level, f 
-
, changes at the left contact.  Let us define voltage to be the average Fermi level for the +k 

and –k states. 
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Figure 5: Voltage drops at the interface between the conductor and the contact 
 
 
III.  Landauer Formula 
 
A.  Proof of Landauer Formula 
 
We now consider conductors where the transmission probability, T, is not unity.  Let us guess that 
G = 2e

2
/h MT, the Landauer formula, and show that we arrive at the correct conductance 

relationships for large and small conductors.  Notice that this formula matches the one derived for 
the ballistic conductor (T = 1) and makes sense for T = 0; conductance is zero when there is no 
transmission. 
 
Proof: 
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where kf = snπ2 , where ns = electron density, Ns = 
2/ hπm , vf = mns /2 hπ  
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Using the Einstein relation by writing current density as ds venJ = , where dv  = drift velocity, and 

relating drift velocity to electric field then comparing EJ σ= , we find σ = e
2
NsD.  In the following 

section, we will prove T = Lo/L+Lo where Lo is a constant. 
 
Therefore, 
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where Gs

-1
 is the resistance from Ohm’s law and Gc

-1
 is the contact resistance, and we arrive at the 

correct formula for conductance. 
 

 
 
Figure 6: Setup similar to that for the ballistic conductor except there is a transmission probability 
 
 
B.  Derivation of T 
 
Let us now consider two conductors in series, each with a scatterer.  The probability of transmission 
through the first scatterer is T1 and the probability of transmission through the second scatterer is T2 
(and reflection probabilities R1 and R2).  The probability of transmission through both conductors 
T12 is not T1T2.  If this was the case, for a chain of scatterers, the probability of passing through all 
the scatterers would decrease exponentially and we would not arrive at Ohm’s law.  There are an 
infinite ways of transmitting through the two conductors: directly T1T2, reflecting twice T1R1R2T2, 
reflecting four times, T1R1R2R1R2T2, etc as shown in figure 7.  Summing these probabilities, T12 = 
T1T2/(1-R1R2) 
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Figure 7: Transmission through two conductors, each with a scatterer 
 
 
The expression (1-T12)/T12 = (1-T1/)/T1+1-T2/T2 has an additive property.  Therefore, In general for 
N scatterers, 1-T(N)/T(N) = N(1-T)/T when we take the transmission probabilities for each scatterer 
to be the same.  Therefore, 
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where N=υL where υ is the linear density of the scatters. 
 
 
C.  Energy Distribution and Voltage Drop 
 
We now consider the energy distribution of the electrons far away and near the scatterer.  On the 

left of the scatterer, the +k states are have the same energy as the left contact µ1.  Similarly, on the 
right of the scatterer, the –k states have energy µ2.  On the right just after the scatterer, +k states 
from 0 to µ1 are filled proportional to T.  In addition, +k states are filled from the reflection of the –k 
states from 0 to µ2 proportional to 1-T.  Similarly for the –k state electrons near the scatterer on the 
left side but reversing the probabilities.  Far from the scatterer on the right, the electrons in the +k 
states redistribute their energy to occupy the lower energy and reach a new highest energy level of 
F’’ while the –k far left of the scatterer redistribute to F’ as shown in figure 8.  Notice that F’ = 

µ2+(1-T)( µ1-µ2) and F’’ = µ2+T(µ1-µ2). 
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Figure 8: Energy distribution of electrons far and near scatterer 
 
 
Therefore, one gets the following Fermi levels for the +k and –k states: 
 

Left: )()( 1 EEf −=+ µθ  

Near left: )}()(){1()()( 212 EETEEf −−−−+−=− µθµθµθ  

Far left: )'()( EFEf −=− θ  

 

Right: )()( 2 EEf −=− µθ  

Near right: )}()({)()( 212 EETEEf −−−+−=+ µθµθµθ  

Far right: )''()( EFEf −=+ θ  

 

If the energy of the +k electrons is µ1 before the scatterer and µ2+T(µ1-µ2) after the scatterer, the 
potential difference across the scatterer is just the difference (1-T) (µ1-µ2)/e.  We get the same 
result if we consider the –k states.  Therefore, the resistance is at the scatterer.  Notice that the 

remaining potential drop when compared to the original bias of µ1-µ2 is T(µ1-µ2) which is exactly the 
voltage drop across the contact. 
 

 
Figure 9: Voltage Drop across scatterer is (1-T)(µ 1-µ2) and across contact is T(µ1-µ2) 
 
 
D.  Heat Dissipation 
 
Scatterers are assumed to be rigid and have no internal degrees of freedom; therefore, they cannot 
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dissipate heat.  The dissipation of heat SGI /2  is from the evolution of energy distribution after the 

scatterer.  Rewriting the equation for heat dissipation,  
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where PD = heat dissipation, energy current = ∫= dEEEi
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Therefore, 
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Since there is heat dissipation as long as the electrons have not yet reached equilibrium far from 
the scatterer because dU/dz is not zero, the dissipation is not only at the scatterer. 
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Figure 10: Heat dissipation (where the average energy of the current changes) is not at the 
scatterer 
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