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It is suggested that conventional spin-density-wave states for an interacting many-electron system in a
two-dimensional square lattice are energetically unstable to the formation of spin flux. Spin flux corre-
sponds to a rotation of the internal coordinate system of the electron as it traverses a closed loop. The
flux is dynamically generated by the electromagnetic interaction in the many-body system. This is illus-
trated by including the nearest-neighbor Coulomb repulsion between electrons in the Hubbard model.
Using a Grassmann field theory, we derive the mean-field equations for spin flux and local-moment or-
dering. For a wide range of Hubbard model couplings U /¢ and doping & we find that the generation of
spin flux leads to a lowering of the mean-field local-moment amplitude. This suppression of the local
moment offsets the additional quantum zero-point energy associated with spin flux and leads to an
overall reduction in the total many-electron energy. When the spin-flux vortex filaments are endowed
with a quantum dynamics, chiral symmetry breaking is possible. We show that under certain conditions,
this leads to a further reduction of local-moment amplitude and many-electron energy.

I. INTRODUCTION

The understanding of doped Mott insulators is a funda-
mental problem in condensed-matter physics.! Consider-
able attention has been focused on this problem, due to
the suggestion by Anderson® that the high T, supercon-
ducting cuprates® exhibit unconventional metallic
behavior as a result of the crossover from Mott insulating
behavior to Fermi-liquid behavior as a function of dop-
ing. These systems possess local spin-1 magnetic mo-
ments, which exhibit magnetic long-range order and a
Mott-Hubbard charge-transfer gap at small doping. At
intermediate doping values corresponding to high-
temperature superconductivity, magnetic long-range or-
der is destroyed by fluctuation effects and the Mott-
Hubbard charge transfer gap exhibits a variety of subgap
electronic structure at infrared frequencies.*~7 It is our
hypothesis that the non-Fermi-liquid behavior of the me-
tallic state at intermediate doping®? is the result of an in-
terplay between electronic degrees of freedom and the
remnant, collective modes of the spin-1 magnetic back-
ground.

In some recent papers, '%!! the concept of spin flux was
introduced. We recapitulate the main arguments given
there to keep this paper self-contained. In Refs. 10 and
11, spin flux was interpreted to originate from a funda-
mental extension of the physical Hilbert space for in-
teracting, spin-i electrons. The extension consisted of
the hypothesis that the many-electron wave function can
exhibit antiperiodicity when the electron coordinate cir-
culates around a closed loop encircling certain isolated
singularities. This is analogous to, but entirely distinct
from the wave-function symmetry in the presence of an
isolated magnetic vortex-line singularity, which contains
a magnetic 7 flux. Flux phases exhibiting conventional
U(1) magnetic flux have been studied widely in the recent
literature. 2716 The spin-flux phase is distinct from these
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U(1) flux phases in that there is no measurable magnetic
field associated with the wave-function singularity.

Instead, the singularity was interpreted'%!! to be an in-
trinsic property of the many-electron wave function. The
picture used to visualize this property is reproduced in
Fig. 1. The many-electron wave function may be regard-
ed (in a variational sense) as a Slater determinant of one-
electron wave functions, each having a Mobius strip char-
acter: Associate one value, Y, of the wave function with
one side of the strip and the other value, —), with the
other side of the strip. As the electron encircles a closed
loop, the wave function switches continuously from one
value to the other.

This twist of the electronic spinor wave function as it
encircles a closed path may be formally described by the
introduction of an SU(2) ‘“gauge” field in the many-
electron Hamiltonian. That is to say, the hopping matrix
element from site i to site j is given by the product of an
amplitude, ¢, and an SU(2) matrix,

L rJ
2 fl dl- Ako*

T9= exp (1.1)

FIG. 1. The Mgbius strip topology of the two-valued elec-
tron spinor wave function, as it encircles a closed path in coor-
dinate space.
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Here, 0%, k=1,2,3, are the 2X2 Pauli spin matrices.
The Ak, k=1,2,3, are the three components of the
“gauge” field, which is circulation free, except for isolat-
ed line singularities in three dimensions (point singulari-
ties in two dimensions). These singularities have to carry
an integer multiple of 7 flux if they are to describe the
Mobius strip topology explained above. In other words,
the product of SU(2) matrices around any closed loop is

I (rH==1. (1.2)
closed loop

When this product is equal to + 1, the SU(2) matrices can
be removed by a unitary ‘‘gauge” transformation. This
corresponds to a homotopically trivial spin rotation of
the electron’s internal coordinate system at different lat-
tice points. When the product is equal to —1, this corre-
sponds to the presence of a flux singularity enclosed by
the loop. This singularity cannot be removed by a uni-
tary transformation and describes the extension of the
physical Hilbert space to include the antiperiodic spin-1
wave functions postulated in Refs. 10 and 11.

In the technical framework discussed so far, spin flux is
strictly quantized in integer units of 7 from a microscop-
ic point of view. This is a direct consequence of the two
valuedness of spin-1 wave functions and the doubly con-
nected topology of the rotation group manifold SO(3),
leading to either the usual (periodic) or the Mé&bius strip
topology. However, if one assumes that vortexline fila-
ments of spin flux can exhibit quantum-mechanical
motion through the many-electron system, the quantum-
mechanical expectation value of spin flux may differ from
its eigenvalues. In this way, arbitrary flux values between
0 and 7 could be realized.

Having rephrased the original arguments in Refs. 10
and 11 we now proceed to discuss spin flux from a formal
point of view. We demonstrate that spin flux can arise in
the framework of mean-field theory for a system of many
electrons interacting via electromagnetic forces. To show
this, we generalize the Hubbard model by retaining the
Coulomb repulsion between electrons on neighboring
sites. Consider the Hamiltonian,

—t 3 (c,Lcja+H.c.)+UEn”n,-l+V > nn; .
{ij)e . ’ i p
(1.3)

Here, c,-Ta is the creation operator for an electron of spin ¢
at site i, ¢, the bare nearest-neighbor hopping matrix ele-
ment, U the on-site Coulomb repulsion, and ¥V the
nearest-neighbor Coulomb repulsion. Also,
n; =c,~TTc,-, +c,-T¢c,- ;- A spin-flux mean-field factorization of
the nearest-neighbor Coulomb repulsion term follows by
writing the product,

i =2n;— % (chepletep)t (1.4)

3
=2n; %2 pspt, (1.5)

where SE=Y, ,aaﬁﬁch. Here, ¥ is the 2X2 identity
matrix and o, k =1,2,3, are the Pauli spin matrices.
Bquation (1.4) follows directly from the anticommutation
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algebra of the electron operators and Eq. (1.5) follows
from the Pauli matrix identity:
3

5 3 ohglo
=0

’é’ﬁ’)* =6ad'8ﬁﬂ' . (1.6)

In the Hartree-Fock approxlmatlon, we replace the

operator product SF(S”) by the expression
(SEYolSE) +SECSEN o= {SEV (SE)TYo.  The four-
component vector,

(Su Yo= Xl]’lAzlﬁgj) (1.7)

describes the quantum-mechanical expectation value,
where the amplitudes x;; and A;; associated with a given
link are to be determined self-consistently in Hartree-
Fock theory. The symbol fi;; denotes a three-dimensional
unit vector. The amplitudes Y;; and A; correspond to
the presence of charge and spin currents, respectively, on
the link (ij). Suppose for simplicity that y;=0,
[A;l=A, and ﬁ,j-—ﬁ‘ for all {ij). Then the mean-ﬁeld
Hamiltonian is given by

Fup=—t 3 (c},Te;p+H.c.)
{ij),aB
+U 3 niyn; +VNpz +4— VAZL (1.8)
1
Here, TZB=(8aﬁ+iAijfi-aa3)/V 1+A?, =1,V 14+A%
op = 2:iM;> and L is the total number of links on the lat-
tice. In a discussion of an itinerant Heisenberg model in
Ref. 17, a trial Hamiltonian similar to the mean-field
Hamiltonian derived here was employed and studied by
means of group-theoretical methods.

The conventional Hubbard model may be regarded as a
choice of mean-field amplitudes A;;, for which the prod-
uct of SU(2) matrices T" around every elementary pla-
quette of the lattice is glven by the identity matrix. A
spin-flux state corresponds to a mean field in which this
product is allowed to deviate from unity. Qur derivation
suggests the following interpretation: Spin flux is dynam-
ically generated by the fact that the electrons experience
an effective spin-dependent interaction originating from
the collective background. It is this interaction that
affects the electron’s spin rotation and leads to a nontrivi-
al flux value. The relation to U(1) flux phases discussed
earlier'?” ! becomes particularly transparent now: While
U(1) flux phases arise from a mean-field approximation,
where the single-particle Hamiltonian contains the ana-
log of a magnetic field (one could call this a unitary mod-
el), the spin-lux phase corresponds to a single-particle
approximation containing the analog of a spin-orbit term
(a symplectic model).

This formal mean-field theory of spin flux is completely
general: While this approach can certainly describe a 7
spin-flux phase, it does not attribute a special significance
to this particular value. The quantization of spin flux fol-
lowing from the original interpretation!®!! (or the ab-
sence thereof) must be tested experimentally. One possi-
ble test is through the measurement of discrete subgap
electronic levels induced by solitons. We do not address
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this question in this paper. Instead, we focus attention on
more general consequences of nonvanishing spin flux.

In this paper, we present a comparison of the mean-
field energies of the doped, antiferromagnetic Mott insu-
lators with and without the presence of spin flux. We
find that the presence of spin flux leads to a reduction in
the magnitude of local magnetic moments and the result-
ing Mott-Hubbard charge gap. This in turn leads to a
lowering of the many-electron Hartree-Fock energy in
the two-dimensional square lattice. For the purpose of il-
lustration, we compare two limiting cases only. In the
first case, we allow a spin flux of X7 to penetrate each
plaquette of the square lattice. This is compared to the
case in which spin flux is absent. A self-consistent deter-
mination of the spin-current amplitude, A;;, and the pos-
sibility of general spin-flux mean fields as a function of
doping will be discussed elsewhere. A simple extension of
the #-flux state to incorporate next-nearest-neighbor hop-
ping and chiral-symmetry breaking is described.

II. MEAN-FIELD THEORY
INCLUDING SPIN FLUX

We consider a generalized Hubbard Hamiltonian on a
square lattice,

=—t 3 YIT,+U S nyn,y @.1)
(ij) i
where 1,0:-r=(c,-TT,ciTl) is a two component creation opera-
tor, {ij) denotes the sum over nearest-neighbor pairs of
sites, and TY&€SU(2). We emphasize that the Hamiltoni-
an Eq. (2.1) is derived from the generalized Hubbard
model. As explained in the introduction, it takes into ac-
count the nearest-neighbor interaction in that T% can de-

viate from unity. We will consider the case where the
]

¢ 1 a 8
exp _fo dTUznnnu ]:Ffd[qs ,p]exp{—-fo d'rz

Here, o and ¥ are two parameters constrained by the requirement that 3y2—a?=
The lattice
—w, T, and plaquette quantities are denoted by a hat. E.g., ¢ is an eight-component vec-
(2) ¢(3) ¢'¥) and p is a direct product of the identity in spin space and a 4X4 diagonal matrix
p“)) The superscripts correspond to the lattice sites within a given plaquette. With this no-

are decoupling (or order parameter) fields.
P (r)=L 1?3, exp(ikr;
tor with entnes (zp‘”
with entries (o', p'?, p

tation, we get

(3)

Z=%fd[1/!t¢,¢“,p]exp[ BUL 3 tr

_ﬂU 2 {b\ltn(aﬁk —k',n —n’+7/$z —kn—n'%a ){b\k’n'

knk’'n’

{2991

matrix product of T is equal to —1. The partition func-
tion of this model can be written as a functional integral
involving Grassmann variables,

z=o[ d[z/ff,zp]exp] Jyar 2 vle—uow,

f drH (YL, (2.2)

The electron operators in the Hamiltonian Eq. (2.2) are
replaced by Grassmann numbers (without changing the
notation). To develop the formal framework of our inves-
tigation, we consider a staggered spin-flux pattern in this
section. We consider a regular lattice of plaquettes [con-
taining four sites 1, ...,4, see Fig. 2(a)], where adjacent
plaquettes are threaded by a spin flux of opposite sign,
but the same absolute value 7. Obviously, this construc-
tion does not uniquely specify the TY. Instead, there are
infinitely many possibilities to realize this situation by
prescribing particular values for the TV, all of them being
connected by “gauge” transformations,

b—>P'=Uy,

2.3)
T-1'=U0TU";

[UeSU2)] .

In what follows we will adopt the simplest possible
“gauge”, where all TV are equal to unity, except those
which connect sites 1 and 2 [see Fig. 2(a)]: These are
equal to —1.

We proceed to derive a mean-field expresswn for the
parutlon function Eq. (2.2). Since (¢4, )?= 2n;yn;, and
(Ploy, )2——-6n,Tn,¢ [where 0 =(0,,0,,0,) denotes the
Pauli spin matrices], the Hubbard—Stratonovitch transfor-
mation can be written as

] . 24

2U and p; and éf (a=1,2,3)
transform is introduced by

pi+ 3 ¢t +ap i+ S ¢idlo )

Fourier

pknpkn+ 2 ¢kn ] +Bz 1nbkn[lc’)n +:u’0 Ax(k)_Ay(k)]{p\kn

2.5)

Setting the lattice spacing to unity all momentum summations range over the reduced Brillouin zone £k,
k,&[—m/2,m/2] and L denotes the number of plaguettes constituting the lattice. Furthermore, in deriving Eq. (2.5),

we have rescaled
a—a'=a/VU, y—y'=y/VU ,
¢Zn_’¢z;1=¢Zn/‘ UL’ Pin *)p;cn =pkn/i UL

(2.6)

and omitted the primes thereafter so that the constraint on ¥ and a now reads 3y*>—a2=2. Finally, 4, (k) and A,(k)
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are direct products of 4 X4 matrices (determined by the plaquette-internal structure and the lattice dispersion relation)
with the identity in spin space,
-7, O

A4,.(k)=—2t cos(k, o, = —2t cosk,) [ 0 =2t cos(k N —7,7)
-

Tx

Q2.7
0 7,

. O
Here, we have introduced the following notation: ¥, ,, and 7, ,, denote Pauli matrices defined in subspaces of the
4 X 4 plaquette-internal space, corresponding to the upper/lower and left/right parts of the plaquette, respectively, see
Fig. 2(a). We have suppressed the tensor product symbol ® for simplicity. The specific form of 4, and 4, in Eq. 2.7)
is due to the “gauge” [the particular values of the T% in Eq. (2.1)] chosen; however, the fact that 4, and 4, anticom-

mute is of course independent of this choice. Integrating over the Grassmann variables in Eq. (2.5) and distinguishing
operators from their components entering Eq. (2.5) by a tilde, we arrive at

L [atp.s1em |—BUL 3t Pt 3 90180

=—2t cos(k, (Y 7y) -

A, (k)=—2t cos(k,)a, = —2¢ cos(k,) [

+trin l—ﬁ[i&“>+i10— A, —A,1+BU [ap‘-i-'r §'$"Ual ] ] . (2.8)

To reduce the unmanageable complexity of Eq. (2.8),
we choose common and physically plausible, time- a
independent “mean-field” forms for the decoupling fields.
In this way, only a few parameters enter the problem,

Eq. (2.8) is still rigorously equivalent to Eq. (2.2). ' _I I I I
_____ T

1

I

|

I

" ——
——

which can later be determined from a stationarity (or I 4 @3]
saddle-point) condition. Note that this is a mean-field
treatment of the onsite interaction, which should not be
confused with the mean-field theory for the nearest- N 1 2y
neighbor interaction derived in Sec. 1. The mean-field i |
theory for the nearest-neighbor Coulomb interaction is 1 i | :
already contained in the structure of the matrices 4, and ! | : i
A e In a more general theory, the spin-flux itself would N TN E S |
need to be determined self-consistently. It has recently l—_
been shown by Lieb!® that for one electron per site
(8=0), the m-spin-flux state has the lowest energy for any b Yv\@./ ¥-\@ o
given choice of the other parameters. For §>0, it is pos- T.XT, | T T,
sible that the self-consistently determined average spin g \\ s AN
flux per plaquette may deviate from . This would lead Z — %7
to self-consistency equations for 4, and 4,. We leave \“\@/4 \\@ a
the problem of generalized spin flux for future work. By YT | T, WT,
fixing the spin-flux mean field to , only few self- e S il AN
consistent parameters enter the problem.
The mean-field expressions for the onsite decoupling
fields, denoted by a bar, are best defined in coordinate c » @1 \.\@ /
space: T,\/s(irz TI/Y:TZ
p:=po=const 2.9) s N P
5 §  i—igl " @A \@/
O, = |~ — T T T. T
oS Erie % | N
where ¢7=0 (j =1, ...,4 is a site index for a given pla-
quette) and FIG. 2. (a) Numbering of the sites inside a plaquette. The
- _ _ plaquette is threaded by spin flux +. (b) Our convention for
dT—i¢} =S expliQ-1), next-nearest-neighbor hopping amplitudes in the staggered
—x——'.—‘_ - - - spin-flux configuration. Thick lines correspond to —¢, thin lines
¢2'_‘,¢{_S exp[tQ-(r+ex )] ’ (2.10) to +t, T\ =ityyn0,» and T, =—it .0,. (c) Qur convention for
pX—igi=S exp[iQ-(r+e,+e,)], next-nearest-neighbor hopping amplitudes in the homogeneous

_spin-flux configuration. Thick lines correspond to —¢, thin lines
T—igh=S exp[iQ'(r+c )] . to +¢, T1=itmnaz’ and T2=_itnnn0 .
4 4 'y z
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Here, r is the location of site 1 of the plaquette in ques-
tion, Q=(Q,,0Q,) is a two-dimensional vector with
0.,Q, €[0,7] and e,,e, are unit vectors in x and y
directions, respectively. Equations (2.9) and (2.10) de-
scribe a mean-field spiral background state with homo-
geneous charge distribution. The spiral state is
parametrized by the mean-field magnetization S and the
“spiral pitch” Q. Obviously, the spiral background has a
single nonvanishing Fourier component (Q) and couples
only spin-up fields with spin-down fields. Since the loca-
tion of the Brillouin zone is at our disposal, we can shift
the argument of, say, the spin-up components [cf. Eq.
(2.5)] by Q and thus group exactly those two field com-
ponents together, which are coupled by the spiral back-
ground. Omitting the discussion of rather subtle sign
changes occurring during the rigorous implementation of
this scheme, the result of our efforts to simplify the prob-
lem can be summarized as follows. The partition func-
tion in the mean-field approximation is given by

Z = exp( —S4)= exp{ —BUL (4p5+45?)
+trin(—Blia+E—Hyp 1)} ,

2.11)
with
(Hyp)in = P Ty v (2.12)
2 yUS pra,tp,a,
and
BE=py—aUpg ,
px=—2tcos(k,), pr=—2tcoslk,+Q,), 2.13)

py=—2tcos(k,), p,=—2tcos(k,+Q,) .

E*—2E*(p,+p; 2 /2+(p, +p,)2/2—p,p; —p,p, +(y USP 1+ (p.p, —p,ps V+[pypy +p,p, — (v USPPP=0 .
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H,r is an 8 X 8 matrix in spin and site space. We wish to
diagonalize H; with respect to the remaining nondiago-
nal entries. The eigenvalues are given by the poles of
det[(Hyr—E)"']. Due to the specific structure of H g,
it is particularly simple to determine those terms which
can give rise to singularities in the determinant. Let us
denote the (1,1) block of (Hyz—E) ! by X{;. Then,

X, =[pra,+p,a,—E —(yUSY(p,a, +p,a, —E) Y
={[pxa; +pya,—E]"!
X[(pya,+p,a,—E)pya,+p,a,—E)
—(yUS? L. 2.14)
Singularities can only reside in
X1 =[(p,a,+p,a,—E)pa, +pjo,—E)—(yUS)*]
=[pxPx+pypy+E*—(Ep, +Ep} ),
—(Ep, +Ep;)a,
+(pepy —pypy e, —(yUSP] L. (2.15)
Moulitiplying the matrix in square brackets by
—pxPx —Pypy, —E*—(Ep,+Ep;)a, —(Ep,+Ep))a,
+(pepy —p,p2 ), +(yUS?  (2.16)

gives a result proportional to the unit matrix, the factor
of proportionality being

(Ep, +Ep})*+(Ep,+Ep,*—(p.p, —p,ps)*
— [pxpx+p,p, +E*—(yUSP*P* .

Therefore, the inverse of Hy—E does not exist (is singu-
lar) whenever

(2.17)

(2.18)

The solutions of this biquadratic equation are the desired eigenvalues and are given by

EL =Hp*+p?)+(yUSPEV HUp*—p?P+(yUSP(p+p')*,

(2.19)

where p=(p,,p,) and p'=(py,p,). We conclude that H . has four different, doubly degenerate eigenvalues, which are
symmetric with respect to interchanging primed and unprimed variables. They will be denoted by E ,, E,_, E_,
and E_ _, respectively. In terms of these eigenvalues, the effective mean-field action S defined in Eq. (2.11) is given by

—Sg=—4BUL(p3+SH)+2 S Wn[pfiw,+u—E Niw,+u—E, Nio,+p—E_, Nio,+p—E__)]. (2.20)
kn

Let us define the thermodynamic potential by Q=S./8. Then the mean-field energy of the system is given by
E =03Q°/3s|, —,, where QF is the thermodynamic potential corresponding to s# [instead of #, the original Hamiltonian
Eq. (2.1)]. For the effective action in Eq. (2.21), we get

_ 3w

B s |s=

=4UL(p5+S?)
1

_2 o EBartaUpE,_ —io,—plE_y—io,—pE__ —io, —p)+ -
ﬁ kn

(io,+p—E, Niw, +p—E4 Nio, +—E_ Nio,+pu—E__)
where the dots in the numerator indicate three terms originating from cyclic permutationsof £, K, _,E_,,E__.

(2.21)
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Performing the Matsubara sums, we arrive at
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E=4UL(p*+ SO +2 S (fF E  +fi E+fi VE_ +fcTE__)
k

+2aUpy 3 (fE T+ HATTHET)
k

with £ ={ exp[B(E—n)]+1} ~1 the Fermi function.

(2.22)

It remains to determine the appropriate values of S and p, from the saddle-point equations 9 /ds =0, 982 /py==0, and
to related pg to the doping parameter 8. Straightforward calculations show that

0=g—;"—=8ULpO+2aUE(fk+++fk+"+f,:++fk__)
0 K
=po=—% (FFr+fd +fe ) T (2.23)
k
and for the total number of electrons N,
N=4L(1—8)=—3—2=2%(f,:“++f,;*"+f,:‘++f{;). o (2.24)
Hence,
p0=—%(1—5) ) (2.25)
Furthermore, the second saddle-point equation gives
a0 OF 4 _OE, _ _+OE_4 __0E__
0=-—-=8ULS+2 St + +ft +
ss§’<asf"asf"asf"as
glz_yU‘z{ A PR 1 ]
2L < |2E,, 2E,_ 2E_, 2E__ ,
4 (p+p')? et fi” _fk—+ + fe (2.26)
E*,—E%_|2E,, 26,  2E_, 2E__ ||’ :

Collecting and combining the results in Egs. (2.22), (2.23), (2.25), (2.26) and introducing the continuum approximation
by means of the substitution ¥, —(L /%) f d?k, we finally derive the following expression for the mean-field energy

per site,
E L[ (B [T E VB A TE ) usi—La2(1-5), (2.27)
4L 2172 —/2 = 4 - -
while the saddle-point equations read
a1 T2 12 ++ +— ot —— [
1—8= o f_ﬂ/zd k(f T+fd "+ fie T fe ) (2.28)
and :
|=_2U fw/z e P + fe + fi ™t + Se o (ptp) At feT
27 Y —n/2 2E,., 26, 2E_, 26__ EY “E%_|2E,, 2B,
| fit ST
2B + 2E . (2.29)

The choice y =a=1 corresponds to the usual Hartree-
Fock approximation. The results reported in this paper
are based on a numerical evaluation of Egs. (2.27), (2.28),
and (2.29).

III. NUMERICAL RESULTS

In principle, we have to minimize the expression for
the energy E, Eq. (2.27), with respect to the parameters

Q., Q,, S defining the spiral background, subject to the
constraint that u yields the correct particle number in the
system (which is in turn determined by the doping pa-
rameter §). We proceed as follows: For fixed doping 5,
Hubbard parameters U/t, and at zero temperature, the
mean-field magnetization S and the chemical potential p
are determined by numerically solving the (coupled)
saddle-point equations (2.28) and (2.29). With these
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values, the mean-field energy Eq. (2.27) is calculated for
Q values, defined on a 10X10 mesh in the region
[0,7]X[0,7r]. The minimum of these 100 energy values
is then accepted as the mean-field energy of the phase at
the given particular values of the parameters. In some
cases, finding a stable solution of the saddle-point equa-
tions turned out to be cumbersome and we changed our
procedure. Fixing Q,, 0,, and S, the chemical potential
was calculated from Eq. (2.28) and a subsequent search in
the remaining three-dimensional parameter space then
identified the energy minimum. This latter algorithm,
disregarding entirely the information from the second
saddle-point equation (2.29), proved to be more reliable
but certainly less efficient than the first scheme.

For the parameters @ and y entering the Hubbard-
Stratonovitch transformation, we chose a=y=1. This
choice is the usual one in the sense that in this case, the
mean-field description following from Egs. (2.27)—(2.29)
corresponds to a Hartree-Fock treatment employing the
equation of motion method. Furthermore, we neglect the
third term in Eq. (2.27) in the sequel. For given U and §,
it is just a constant and, therefore, irrelevant for our con-
siderations.

The main purpose of the present paper is to investigate
whether or not the spin-flux phase proposed in Refs. 10
and 11 has an energetic advantage as compared to the
usual spin-density wave. In Ref. 19, the properties of the
spin-density wave were discussed in great detail, using
essentially the same theoretical framework as the one em-
ployed in the last section. From Ref. 19, the mean-field
equations corresponding to our Egs. (2.27)-(2.29) for the
case of the spin-density wave read (the number of sites
being 4L)

E 1

= T q2 + — 2 .
E—mf_ﬂd k(ffE.+frE_)+US?, (.1
1—8=— [T @St +£7) (3.2)

47? ¥ —r
+ —_—
U 7 5, | f& ~fx
I=—— dk | —/——— 1|, (3.3)
41T2 f—'ﬂ E+ _E_ ]
with
Ey=Yep+e1 )tV (6~ €10 HAUUSE,  (3.4)
where €, = —2t(cosk, +cosk, ). Our first task is to com-

pare the energy values resulting from Egs. (3.1)-(3.3)
with those coming from Egs. (2.27)—(2.29). To this end,
we have defined a mesh in the phase diagram spanned by
the doping parameter & and the ratio U /¢ of the Hubbard
parameters. The meshpoints range from §=0 to 0.4 in
steps of 0.1, and from U/t =2 to 15 in steps of 1. In Fig.
3, we Thave plotted the function f(5,U/¢t)
=(Esp—Eyy)O(Eqy —Eyp), where Eg, and Egy, are
the mean-field energies of the spin-flux phase and the
spin-density wave, respectively, and ©(x) is the step func-
tion. In other words, f(8,U/t)=Ey,—Ey, for
Eyw>Ey and f(8,U/t)=0 otherwise. The corre-
sponding contour plot in the lower part of Fig. 3 clearly
identifies two regions of the parameter space, where the
spin-flux phase is energetically favored: A first one at
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FIG. 3. The function f(8,U/t)=(Ey, — E 4w O Egyy—Eyp)
versus doping 8 and the ratio U/t of the Hubbard parameters.
The quantities E, and Egy, refer to the mean-field energy of
the spin-density wave and the spin-flux phase, respectively, and
©(x) denotes the step function.

U/t=2—10 and 6=0—0.2, and a second one at
U/t=10—15 and 8~0.3—0.4. Closer inspection re-
veals that the spin-flux phase at zero doping is actually
favored for all values of U /¢ considered here, see the
solid line in Fig. 4 representing the energy difference
AE =E,—E 4,. For finite doping §=0.2, the dotted
line in Fig. 4 shows that a crossover from a sfp to a sdw
ground state occurs around U/r=8, as expected from
the information in Fig. 3. For a more detailed analysis,
let us distinguish between the two main contributions to
the mean-field energy, namely, the sum over the quasipar-
ticle levels E, [the first term in Egs. (2.27) and (3.1)] and
the magnetization energy E, =US?. In Fig. 5, the upper
and the lower solid curve show the behavior of
AE ,=E fg’ —E fl‘z,w and AE, =E$P— E5¥, respectively, at
zero doping, while the dotted curves correspond to the
same quantities for §=0.2. The most striking feature of
Fig. 5 is that we have ES < ES% (and hence Ssip < saw

0.10 T T T T T T -

0.00

-0.10

AER

-0.20

-0.30 L ! L 1 . 1
2.0 6.0 10.0 14.0

Ut

FIG. 4. The energy difference AE =E, —E, between the
staggered spin-flux phase and the spin-density wave for §=0
(solid curve) and 8=0.2 (dotted curve) as a function of U /¢.
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-0.20

-0.30
2.

FIG. 5. The partial energy differences AE ,=Ef —E3 and
AE,=E°— E5 between the staggered spin-flux phase and the
spin-density wave for §=0 (solid curves) and §=0.2 (dotted
curves). Here, E;, and E; refer to the contributions of the
quasiparticle levels and the on-site magnetization, respectively,
to the mean-field energy. The curves corresponding to AE, are
strictly nonpositive.

for the mean-field magnetizations) for both =0 and
8=0.2 and for all values of U/t considered here. The
mean-field magnetization S determines the size of the
Mott-Hubbard gap in the quasiparticle excitation spec-
trum. The most favorable value of S is determined by
two competing influences. An increase in S (and hence in
the size of the gap) moves the occupied quasiparticle lev-
els towards lower energies and, therefore, reduces the to-
tal energy of the system. On the other hand, spin align-
ment tends to localize the electrons due to the Pauli prin-
ciple and therefore increases the total energy [cf. the term
US? in Egs. (2.27) and (3.1)]. In Fig. 6, a comparison of

0.80 T T T T T | p— T T T T

FROTTIIN

I
FAL IR TR

0.20

0.00 1 1 ! i : 1
-6.0 -4.0 -2.0 0.0 2.0 40 6.0
E/lt

FIG. 6. Comparison between the density of states of the
spin-density-wave state and the staggered spin-flux phase for
tonn 7/t =0 (solid curves), and 7,,,/t =0.3 (dotted curves). We
have set S =0, Q, =Q, =w. The case of the spin-density wave
can be identified by the Van Hove singularity close to the band
center.
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the density of states for both phases considered here
(solid curves, S =0,0Q,=Q, =) clearly shows the well-
known Van Hove singularity of the usual antiferromag-
netic state at the center of the band, while the density of
states for the spin-flux phase vanishes at this point.
These radical differences in the density of states explain

‘why the ensuing mean-field magnetizations are so

different and why, therefore, the corresponding contribu-
tions to the mean-field energy differ. Indeed, a short
glance at Fig. 5 shows that the energy advantage of the
spin-flux phase can be (almost) exclusively attributed to
the term US2. The sum over the quasiparticle energy lev-
els turns out to be almost exclusively in favor of the spin-
density-wave state. Over wide ranges of the parameters
U/t and 8, however, this effect is overcompensated by
the magnetization energy, leading to the observed overall
energy advantage of this spin-flux phase. The crossover
to the spin-density-wave state at finite doping is due to
the fact that the energy difference AE ;, remains unusual-
ly large for increasing U /¢, as compared to the case of
zero doping. We are led to conclude that the spin-
density-wave state—probably due to the peculiar density
of states of the antiferromagnetic phase—can take better
advantage of the nontrivial spiral pitch Q at finite values
of 3.

In a next step, we investigate the stability of the situa-
tion just described under certain changes of the model.
One might argue that a nearest-neighbor hopping model
on a square lattice with on-site interactions is a very spe-
cial case, in which the spin-density wave might be
artificially handicapped (e.g., by the Van Hove singularity
mentioned above). In the nearest-neighbor hopping mod-
el, there is no chirality associated with the spin-flux
phase. A spin flux 7 is equivalent to a spin-flux —w.
Furthermore, the mean-field energy of the spin-flux state
is the same as that of more conventional U{1) charge flux
states, with the exception that a physical magnetic field is
not present. We, therefore, consider the following two
modifications of the original model: (i) a staggered spin-
flux phase with next-nearest-neighbor (nnn) hopping and
(ii) a homogeneous spin-flux phase with nnn hopping.
These two cases are compared to the usual fluxless phase
with nnn hopping. We restrict ourselves to the antiferro-
magnetic case (i.e., zero doping) in this discussion. In the
homogeneous spin-flux phase every plaquette is threaded
by a spin flux equal to + 7. Furthermore, we assume that
the spin flux is uniformly distributed over the plaquette
so that the closed path 1—2—4—1 [see Fig. 2(a)] con-
tains a flux equal to +w/2. From the standpoint of
quantized spin flux, this may be regarded as a mean-field
state in which the quanta of spin-flux exhibit quantum-
mechanical motion and are deconfined. In Figs. 2(b) and
2(c), two schemes of hopping amplitudes corresponding

to the cases (i) and (ii) defined above, respectively, are in-

dicated. In this figure, all unmarked links are associated
with hopping amplitudes +¢, links from thick lines carry
—t, T,=ity,0, and T,=—it  o,. The second-
nearest-neighbor hopping model clearly leads to distinc-
tion between 7 flux and —w flux. An electron hopping
across the diagonal of a plaquette experiences a spin flux
of /2, which is not equivalent to —# /2. This endows



31 MEAN-FIELD ENERGIES OF SPIN-FLUX PHASES

each plaquette with a specific chirality. It also leads to a
distinction between staggered and uniform spin flux. In
the uniform spin-flux phase, there is a global chirality of
the mean-field state, whereas the staggered spin-flux
phase has a locally alternating chirality. As we will see,

charge flux states.

(3.4) remains valid with €, replaced by

12997

The analogous calculations for the models (i) and (ii) are a
little more complicated. For the staggered phase (i) the
mean-field Hamiltonian with antiferromagnetic back-
ground is given by

(ﬁeE_E)—l

this leads to significant changes in the quasiparticle spec- Heg=p:a; tpya, tpya,, +USa, , (3.6)
trum and many-electron energy. The spectrum also be-  ypare
comes distinct from that of the corresponding U(1)
px = —2tcos(ky), p,=—2tcos(k,),
To determine the new mean-field energies, we have to -4 (k) cos(k. ) (3.7)
calculate the modified quasiparticle spectra. In the case Pry = T “lunn COSUR, ) COSLK, )
of the fluxless state, a simple calculation shows that Eq.  ,pq
Q= "Y:Tx> & =VxTxy @ =T,0;, (3.8)
€, =—2t[ cos(k, )+ cos(k, })]—4t,,, cos(k, ) cos(k,) . Oy =VyT20, - '
(3.5)  The resolvent operator is simply
J -
_ Ay H(USY sy —EP = 2py By Iy +pyoy + USay —pyyay vE)
[p2+p, +(USY—pl, —E*P—4pl, E* ’ '
so that the eigenvalues of H . are given by the zeros of the denominator in Eq. (3.9), i.e., by
(3.10)

EQy =+[p2+p2-+(USV¥+pl +2p,,V p2+p2+(USY]'/? .

In the case of the homogeneous flux phase (ii), the mean-field Hamiltonian formally also looks like Eq. (3.6), but now

with

Px=—2tcos(k,), p,=—2tcos(k,), G

3.11

Dyy = —4t,y,sin(k, )sin(k, )
and

Cx="V2Txs O T VxTxs QA =T;0;, (3.12)

Ay = V02 » .
so that

)1 [p2+p2+pl +(USP—E*—2p, USa,a,, l(p,a, +p,a,+USa, +p,,a,, tE) (3.13)

eff [p,?—kpyz—l—(US)2+p3y_E2]2__4p3y(US)z ’

and hence 0.00 ™

E® =+v/p24pl+(p,, +US)* . (3.14) 010 i
Remarkably, repeating the calculations that led to the 020 _
solid curve in Fig. 4 with the quasiparticle spectra given | |
by Egs. (3.5) and (3.10) and modest values of #,,, =
(0.1—0.3¢) hardly induces any changes in Fig. 4. A < 3[ .~ ]
glance at the corresponding density of states for 7
tonn =0.3¢ (dotted curves in Fig. 6) shows that, indeed, -0.40 .
the main features of the distributions are preserved. .
Therefore, no dramatic physical effect occurs when chiral 0,50 -
symmetry is preserved globally. |

In case (ii), however, chiral symmetry is broken global- 0.60 ) ) L . L .
ly and we encounter a different behavior. In Fig. 7, we 2.0 6.0 U/ 10.0 14.0
t

compare the energy difference AE=Eg —E, where
“sfp” now refers to the homogeneous flux phase, for
tann =0 (solid curve), ¢.,,=0.2 (dotted curve), and
tonn =—0.5 (dashed curve). Obviously, the mean-field ener-
gy of the homogeneous flux phase steadily and noticeably

FIG. 7. The energy difference AE =E, ~ E 4y, between the
homogeneous spin-flux phase and the spin-density wave for
tan /=0 (solid curve), 1,,,/t=0.2 (dotted curve), and
tonn /t =0.5 (dashed curve).
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FIG. 8. The density of states of the homogeneous spin-flux
phase for §=0, Q,=Q,=w, and t,,/t=0 (solid curve),
tonn /1 =0.2 (dotted curve), and t,,, /t =0.5 (dashed curve).

decreases as we increase f,,,. The physical reason for
this effect can be read off Fig. 8, where we display the
density of states corresponding to Eq. (3.14): Again, the
cases f,,, =0, fp,=0.2, #,,,=0.5 correspond to the
solid, dotted and dashed curve, respectively, and we have
set § =0, @, =Q,=m. Even for §=0a gap in the spec-
trum opens as soon as f,,, 0. This appears to be an in-
teresting observation in its own right. It indicates the
possibility to have a finite gap in the quasiparticle spec-
trum originating from a state of broken symmetry (the
homogeneous spin-flux phase), quite unlike the tradition-
al magnetic phases.

1IV. SUMMARY AND CONCLUSION

In this paper, we have given a formal motivation for
the spin-flux phase introduced earlier, deriving the possi-
bility of spin flux from a mean-field decoupling of a gen-
eralized Hubbard model with nearest-neighbor Coulomb
repulsion. This procedure provides a more general
framework for the spin-flux concept and the relation to
the original arguments was emphasized. Two extreme
cases were analyzed in depth: The spin-density wave
state with zero spin-flux was compared to a spin-flux
phase defined by a staggered m-flux pattern. We found
that, over a wide range of the parameters U /¢ and 3, the
latter has an energy advantage over the former. This
difference in energy could be attributed to the reduced
local-moment amplitude in the spin-flux phase, which
was in turn a consequence of the specific changes in the
density of states in the presence of spin flux. Further-
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more, we found that the inclusion of moderate next-
nearest-neighbor hopping did not change the picture in
any essential way. Replacing the staggered by a homo-
geneous spin-flux pattern, however, thus breaking chiral
symmetry, led to an even lower mean-field energy for
nonzero next-nearest-neighbor hopping. This result
could be understood by observing that the corresponding
density of states exhibits a gap even for vanishing local
moment amplitude.

We believe that this work provides additional plausibil-
ity that a peculiar type of correlation, as described by the
spin-flux concept, may be present in the ground state of
strongly interacting systems. We have shown how this
possibility can formally arise and we have demonstrated
that it leads, under certain conditions, to a considerable
energy advantage. However, this paper is certainly only
a first step. It is, in fact, necessary to determine the spin-
current order parameter A;; self-consistently. This would
be particularly interesting at finite doping, where general-
ized spin-flux phases may be relevant. What we have
shown, in this paper, is that specific configurations of
spin flux on a square lattice provide an alternative to
large local-moment formation, in response to nesting in-
stability. A more exhaustive, self-consistent treatment is
needed to determine the optimum combination of spin-
flux and local-moment ordering. In systems, where the
density of states near the Fermi energy is nonsingular, we
believe that spin flux will lead only to an increase in
quantum zero-point energy (as would be the case if a con-
ventional magnetic field were applied to the system),
which would not be compensated by a corresponding de-
crease in local-moment amplitude. This is already evi-
dent in certain doping regions in Fig. 3.- Studying the
behavior of the self-consistent mean-field flux value as a
function of doping, should be particularly interesting. In
the case of finite doping, another possibility is that corre-
iations of the spin-flux type appear locally rather than
globally and the homogeneity of the system is disrupted.
This situation is more difficult to describe, as one would
not only have to deal with a complicated local structure,
but also with its dynamics, i.e., with the motion of locally
correlated areas. It has already been pointed out in Refs.
10 and 11 that it might be ultimately possible to catch the
essence of this scenario by considering a model where the
flux-line singularities (associated with magnetic solitons)
form a quantum liquid. One would then have to study
the quantum statistical mechanics of this system. We
hope to proceed along this road in a future publication.
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