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Spectral properties of spin-orbital polarons as a fingerprint of orbital order
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Transition-metal oxides are a rich group of materials with very interesting physical properties that arise from
the interplay of the charge, spin, orbital, and lattice degrees of freedom. One interesting consequence of this,
encountered in systems with orbital degeneracy, is the coexistence of long-range magnetic and orbital order, and
the coupling between them. In this paper, we develop and study an effective spin-orbital superexchange model
for e3

g systems and use it to investigate the spectral properties of a charge (hole) injected into the system, which
is relevant for photoemission spectroscopy. Using an accurate, semianalytical, magnon expansion method, we
gain insight into various physical aspects of these systems and demonstrate a number of subtle effects, such as
orbital to magnetic polaron crossover, the coupling between orbital and magnetic order, as well as the orbital
order driving the system towards one-dimensional quantum spin-liquid behavior. Our calculations also suggest
a potentially simple experimental verification of the character of the orbital order in the system, something that
is not easily accessible through most experimental techniques.
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I. INTRODUCTION

It is a well-established fact that the ground state and
excitations of a Hubbard-like model in the regime of strong
Coulomb interactions are faithfully reproduced by an effective
model, derived using second-order perturbation theory, which
describes almost localized electrons with suppressed charge
fluctuations. The simplest and the most extensively studied of
such models is the t-J model [1], which describes an anti-
ferromagnetic (AF) Heisenberg exchange interaction between
localized spins. Doping away from half filling generates an
electron (or hole) hopping in the subspace without double
occupancies, a formidable many-body problem. Notably, this
model predicts that a charge added to the system will produce
a string of misaligned spins, when the Néel AF state is consid-
ered, that would trap it in a linear string potential [2–5], while,
on the other hand, it allows for coherent charge propagation
by means of spin fluctuations [6–8] which remove the spin
excitations produced by the charge. As such, this is a simple
demonstration of a quasiparticle (QP), in which the charge can
only move freely if it couples to the magnetic background of
the system.

In systems with active orbital degrees of freedom, such
a low-energy effective model includes superexchange in-
teractions between spins and orbitals [9,10]. The develop-
ment of multiorbital Hubbard models [11,12], most com-
monly employed in the description of transition-metal oxides
with d orbital degeneracy, led to the derivation of spin-
orbital superexchange models [9], which are t-J-like model
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generalizations which accommodate the orbital degrees of
freedom on equal footing with electron spins [13–26]. Such
models are composed of products of a spin term, characterized
by the common SU(2) symmetry, and the orbital pseudospin
part of a lower symmetry [20], reflecting the orbitals’ spatial
extent and their interdependence on lattice symmetry. These
models allow not only spin but also orbital long-range order in
the system, and predict coherent orbital excitations (orbitons)
akin to magnons, to which a charge can couple in a similar
fashion [27–29]. However, the unusual properties of orbitons
and their interaction with the spin degree of freedom make
this problem even more challenging than the one described
above. It is for this reason that these models have remained a
challenge that requires novel theoretical approaches.

Here we are primarily interested in eg systems, which
realize pseudospin T = 1/2 interactions and are thus the
closest analogue of the t-J model with S = 1/2 spins. How-
ever, due to nonconservation of the orbital quantum number,
free propagation of charge will be permitted by the kinetic
Hamiltonian, and the interaction with orbitons will primarily
make the resulting QP heavier, especially in view of the much
smaller role played by orbital fluctuations. It was nonetheless
suggested that the importance of the fluctuations increases
with the dimensionality of the eg problem in the case of
ferromagnetic (FM) spin order, with one-dimensional (1D)
alternating orbital (AO) systems being Ising-like [30].

On the other hand, for an AF system, the hole dynamics
is dominated by orbital excitations which lead to quasilo-
calization when AF and AO order coexist [31,32]. Here we
shall address the interesting complementary question of what
happens in an intermediate state where AF and AO orders ex-
ist simultaneously, but in orthogonal directions, such that the
system can be decomposed into 1D AF chains and, orthogonal
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to them, two-dimensional (2D) planes with AO order. Such a
situation occurs in numerous real three-dimensional (3D) sys-
tems, in particular in copper-fluoride perovskite KCuF3 [33]
and in the perovskite manganite LaMnO3 [34,35]. Both of
these systems are of high interest either from the point of view
of basic research or novel phenomena triggered by spin-orbital
interplay. KCuF3 is a rare example of a nearly perfect 1D spin
liquid [36,37], while LaMnO3 has almost perfect orbital order
and applications stemming from the colossal magnetoresis-
tance are found in doped La1−xSrxMnO3 [38,39].

It is the type of orbital order in spin-orbital systems
which is very intriguing. The orbitals occupied by electrons
in LaMnO3 are tuned by the tetrahedral field which splits
the eg orbitals [16,40]. It was realized long ago that the
photoemission spectra in LaMnO3 strongly depend on the
type of orbital order in the ground state [41], but there is
no systematic method to measure this order experimentally.
Resonance Raman spectroscopy [42] and optical properties
[43,44] were proposed to investigate the orbital order, but
one has to realize that the orbitals couple rather strongly to
spins [45] and it is thus challenging to investigate the hole
coupling to spin-orbital excitations in a systematic way. In
the regime of intermediate coupling, the spectral functions
could be obtained using the generalized gradient approxima-
tion with dynamical mean-field theory (GGA + DMFT) [46].
Below we use the strong-coupling approach and show that
the spectral functions of spin-orbital polarons, obtained from
the respective Green’s function, may be used to identify the
orbitals occupied in the ground state.

The remainder of this paper is organized as follows. We
introduce the spin-orbital model with eg degrees of freedom
in Sec. II. The variational momentum average method used
to generate the spectra with increasing number of excitations
is described in Sec. III. In Sec. IV, we present and discuss
the numerical results obtained for two representative types of
orbital order in the intermediate phase with AF/AO order. The
paper is summarized with the main conclusions in Sec. V. Fi-
nally, we present the details of the derivation of the mean-field
phase diagram in Appendix A, and some of the more involved
steps of the derivation of the fermion-boson polaronic model
in Appendix B.

II. THE SPIN-ORBITAL MODEL

KCuF3 is a tetragonal system (pseudocubic to first ap-
proximation), with Cu(d9) ions placed in octahedral cages of
fluorides. The crystal-field splitting splits the 3d orbitals into
the low-lying t2g filled states and the active eg states. Thus, the
copper configuration can be equivalently described as e3

g in
terms of electron occupation or e1

g in terms of hole occupation.
The kinetic part of the Hamiltonian includes the

electron hopping t between two directional orbitals
|zγ 〉 = (3z2

γ − r2)/
√

6, located on nearest-neighbor (NN)
Cu(3d9) sites, where zγ ≡ x/y/z is parallel to the main cubic
directions a/b/c of the system [47]. The complementary
orbitals |z̄γ 〉 = (x2

γ − y2
γ )/

√
2 do not contribute because they

are orthogonal to the intermediary ligand F (2p6) orbitals.
The above definition of the hopping is not practical, however,
due to the orbital basis changing with the hopping direction.

Transforming all terms into the |z̄〉, {|z〉} basis, we find

Ht = − t

4

∑
〈i j〉⊥c

(d†
izσ ∓

√
3d†

iz̄σ )(d jzσ ∓
√

3d jz̄σ )

− t
∑
〈i j〉‖c

d†
izσ d jzσ + H.c., (1)

where the upper/lower sign corresponds to the in-plane di-
rections a/b, respectively. Here, d†

iz̄σ and d†
izσ create electrons

with spin σ in the |z̄〉 or the |z〉 orbital, respectively, at site i.
The electron interactions are described using a multiorbital

Hubbard-like model, including on-site Coulomb repulsion U
and Hund’s exchange interaction JH which drives the site
towards maximal spin. We are interested in the strongly
correlated limit U 	 t , which, when considering virtual ex-
citations, e3

ge3
g � e2

ge4
g, leads to an effective superexchange

model [9]. Due to the proximity of degeneracy of the eg

orbitals, one needs to consider the multiplet structure of the e2
g

ion. The spectrum of these excitations has four eigenenergies:
(U − 3JH ), (U − JH ) (double), and (U + JH ) [48]. Taking all
this into consideration leads to the following superexchange
Hamiltonian:

Hγ

1 = −2Jr1

∑
〈i j〉‖γ

(
Si · S j + 3

4

)(
1

4
− τ

γ
i τ

γ
j

)
, (2a)

Hγ

2 = 2Jr2

∑
〈i j〉‖γ

(
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4

)(
1

4
− τ

γ
i τ

γ
j

)
, (2b)

Hγ

3 = 2Jr3

∑
〈i j〉‖γ

(
Si · S j − 1

4

)(
1

2
− τ

γ
i

)(
1

2
− τ

γ
j

)
, (2c)

Hγ

4 = 2Jr4

∑
〈i j〉‖γ

(
Si · S j − 1

4

)(
1

2
− τ

γ
i

)(
1

2
− τ

γ
j

)
, (2d)

where the {ri} coefficients serve to impose the multiplet
structure at finite Hund’s exchange JH > 0,

r1 = 1

1 − 3η
, r2 = r3 = 1

1 − η
, r4 = 1

1 + η
, (3)

with

η = JH/U, (4)

while τ
γ
i are bond-direction-dependent orbital operators for

the principal cubic axes, which can be expressed using the
pseudospin operators in the following way:

τ
a/b
i = − 1

2

(
T z

i ∓
√

3T x
i

)
, τ c

i = T z
i , (5)

under the standard convention,

|z̄〉 ≡ |↑〉, |z〉 ≡ |↓〉. (6)

It can be shown that assuming a FM spin state in the ab
planes and under a purely octahedral crystal field, the orbital
order preferred by the superexchange Hamiltonian is AO, with
the

|±〉 = (|z̄〉 ± |z〉)/
√

2 (7)

states occupied. However, this need not be the case for other
magnetic orders. In the general case, the occupied orbitals
are given by rotation of the basis, which is most conveniently
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parametrized with an angle ±(π/2 + φ), where the sign de-
pends on the orbital sublattice, with φ = 0 corresponding to
the {|+〉, |−〉} reference basis (7).

For further convenience, we also introduce an orbital crys-
tal field into the Hamiltonian, which serves to remove the
orbital degeneracy of the system [16], and to make the model
more realistic [49]:

Hz = −Ez

∑
i

T z
i . (8)

This term simulates an axial pressure along the c axis, and
for large values of |Ez| it supports ferro-orbital (FO) order,
with occupied states either |z̄〉 (for Ez > 0) or |z〉 (for Ez < 0).
Tuning the orbital field thus allows one to drive the system
from AO all the way to FO order in a continuous manner,
although we will not be interested in this extreme limit. Note
that some of the superexchange terms are similar to the crystal
field in that they are linear in the τ γ operators, and thus when
these are active (i.e., when the magnetic order is not assumed
to be FM) there is an internal orbital field already present
in the superexchange Hamiltonian. Thus, the external field
will work either to counter or to enhance these terms, in turn
affecting the magnetic order. In this way, the system incor-
porates spin-orbit coupling through indirect means, allowing
for the magnetic and orbital orders to affect each other and,
furthermore, to be controlled through external parameters,
such as an axial pressure.

In order to derive an effective polaronic Hamiltonian for
a single charge doped into the system, we need to perform
a series of rather involved steps to (i) determine the clas-
sical ground state by calculating the mean-field energy and
minimizing it with respect to the crystal field Ez (for more
details, see Appendix A), (ii) transform the kinetic part of
the Hamiltonian (1) to the orbital basis corresponding to
the classical ground state, and (iii) introduce magnons and
orbitons (to represent magnetic and orbital excitations above
the classical ground state) as slave bosons by means of a
Holstein-Primakoff transformation. As these operations are
rather tedious and unlikely to be of much interest to the
general audience, we relegate this derivation of the polaronic
Hamiltonian to Appendix B. It is only important to notice
that from this point onward, we will be mostly relying on the
outlined formalism, and thus we will be referring to magnetic
and orbital excitations as magnons (denoted with the operators
b†

i ) and orbitons (denoted as a†
i ), respectively, and treating

them as well-defined, spinless bosons, while the charge degree
of freedom will be represented by the spinless fermion f †

i .
The final Hamiltonian consists of the exchange term HJ

and the kinetic term Ht . It is important for the understanding
of the paper what physical processes are realized by each
of those terms. The exchange term, HJ ≡ HI + HII, is of
course responsible for the spin-orbital order in the presence
of the crystal field; here we have conveniently divided it into
the terms quadratic in (pseudo)spin operators, included in
HI, and the linear (crystal-field-like) terms, included in HII;
see Appendix B. After the Holstein-Primakoff transformation,
these terms are purely bosonic operators and include the Ising
terms, which only serve to “count” the bosonic energy, and
the fluctuation terms, which create and destroy the various

bosons without involving the doped charge, similar to the spin
polaron in the t-J model [7].

The kinetic Hamiltonian, Ht ≡ T + V⊥
t + V‖

t , on the other
hand, contains all of the charge dynamics, as shown in Ap-
pendix B. The free hopping term T is restricted to the FM
ab planes due to spin conservation—any hopping out of plane
necessarily produces magnons. The Vt term includes all the
processes responsible for the electron-boson coupling and
constitutes the actual interaction in our model. Because of
the in-plane FM order, the perpendicular term V⊥

t can only
produce orbitons, while its influence on magnons is limited
to a fermion-magnon swap term. Finally, the out-of-plane
term V‖

t describes the hole dynamics by the coupling to both
magnons and orbitons at the same time. Altogether, these
terms represent all the fermion-boson coupling processes
possible in this system and include terms as complicated as
five-particle interactions. Our variational technique, which we
will briefly describe in the next section, allows us to include
all of those terms, something that would not be possible to
do in more standard polaronic methods relying on the linear
spin-wave (LSW) approximation.

It needs to be emphasized, however, that the present model
employs a number of idealizations (e.g., we neglect the inter-
mediary oxygen orbitals and proper Jahn-Teller interactions,
and ignore any resulting structural transitions that might occur
in the system) and is not intended to produce a realistic low-
energy excitation spectrum, but rather to study the effects of
spin and orbital excitations on the charge dynamics in systems
with the A-AF/C-AO ground state, as encountered in KCuF3

and LaMnO3. The results presented here are therefore not
meant to directly address the experimental results, although
some of the observed qualitative effects could be relevant to
interpret or guide the experiment.

III. THE MOMENTUM AVERAGE METHOD

We use the well-established momentum average
(MA) variational method [50–53] to determine the
one-electron Green’s function, G(k, ω) = 〈k|G(ω)|k〉, where
G(ω) = [ω + iη − H]−1 is the resolvent operator and
|k〉 = f †

k |0〉 is the Bloch state for an electron injected into
the undoped, semiclassical ground state |0〉. The Hamiltonian
H is divided into H0 = T + Hz

J , where Hz
J is the Ising part

of the exchange terms in Eq. (A2) (usually, the quantum
fluctuations are of little importance and can be ignored; see
also Ref. [54]), and the interaction, V = V⊥

t + V‖
t , which

might also be extended to include the spin-fluctuation terms
of the exchange Hamiltonian; see Appendix B.

The variational MA method uses Dyson’s identity,

G(ω) = G0(ω) + G(ω)VG0(ω), (9)

to generate the equations of motion (EOMs) for the Green’s
functions, within a chosen variational space. Specifically,
evaluation of V|k〉 in real space links to generalized prop-
agators that involve various bosons beside the fermion; the
variational expansion controls which such configurations are
included in the calculation. The EOMs for these generalized
Green’s functions are then obtained using the same procedure
and the process is continued until all the variational configu-
rations are exhausted, at which point this hierarchy of coupled

125109-3
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FIG. 1. The mean-field phase diagram of the 3D Kugel-
Khomskii model. We focus on the A-AF/C-AO spin-orbital order,
for which we determine the spectral function (10) occurs between
two AF phases with FO order (white areas): AFz (left) and AFz̄
(right). The color scale indicates the detuning angle φ in degrees.
The values of φ = 0 and φ = π/6, found at η = 0.16 (red dashed
line), used to investigate the spectral functions in the present study,
are indicated by × and +, respectively. Note that a more complete
mean-field phase diagram including possible phases described by
variational wave functions with short-range order was presented
before in Ref. [56].

EOMs automatically truncates. The validity and accuracy
of the approximation is determined by how appropriate the
choice of the variational space is; this is usually based on some
physically motivated criterion restricting the spatial spread
of the bosonic cloud, as exemplified below. The accuracy of
the results can be systematically improved by increasing the
variational space until convergence is achieved.

In this way, we generate analytical EOMs that easily allow
for exact implementation of the local constraints (i.e., charge
and bosons are forbidden from being at the same site simply
by removing from the variational space the configurations
which violate this constraint). Once generated, the EOMs
form an inhomogeneous system of linearly coupled equations,
which is solved numerically to yield all the Green’s functions,
and in particular G(k, ω) from which we determine the spec-
tral function,

A(k, ω) = − 1

π
ImG(k, ω). (10)

This quantity is directly measured through angle-resolved
photoemission spectroscopy for LaMnO3 or inverse photoe-
mission for KCuF3.

We shall be interested in the spectral function obtained for
the A-AF/C-AO spin-orbital order phase where both magnon
and orbiton excitations may couple to the moving charge.
The mean-field analysis of this phase includes the energy
minimization to select the optimal value of the detuning angle
φ (A1), as described in Appendix A. We investigate two
ground states with φ = 0 and φ = π/6 found at η = 0.16,

shown by the respective symbols in Fig. 1, and take t ≡ 1.0
as the energy unit.

Our method, while highly accurate and versatile, does not
come without its limitations. The most important stems from
the very basis of the expansion, namely, the cutoff criterion
being implemented in real space. As a consequence, only local
processes can be treated exactly, while other interactions have
to be approximated in a way compatible with this methodol-
ogy. As such, this method is especially well suited to polaronic
problems, where a charge couples to bosonic excitations either
on site or on the nearest-neighboring site, such as in this paper.
The most common obstacle here is the treatment of quantum
fluctuations, which are not tied to the itinerant charge and
are therefore completely nonlocal. These are generally treated
by being included only in the immediate neighborhood of
the electron, the logic behind this being that only then will
they affect the properties of the arising QP. This works as
long as the classical ground state is not too different from the
true quantum ground state, i.e., the classical state is a good
starting point for the expansion. This would make our method
tricky to use in one dimension, but any higher-dimensional
problem is easily treatable. Another limitation comes from
the use of real-space Green’s functions, which are hard to
calculate already for a single electron. The treatment of mul-
tielectron problems is an ongoing, highly challenging effort,
although this is certainly true of all semianalytical Green’s
function methods. Here we only focus on single-electron
spectral functions, which are relevant for photoemission
spectroscopies.

IV. RESULTS AND DISCUSSION

We carry out the MA calculation in the variational space
defined by configurations with up to four bosons present.
Because the calculation is done for a 3D system with full
treatment of the charge coupling to bosonic degrees of free-
dom, the branching factor for the EOMs is far too great to
allow us to include more configurations. Nevertheless, based
on our previous research within similar models [54,55], we
expect this choice to be sufficient to achieve a satisfactory
convergence for the ground state.

In order to distinguish the physical effects arising due to
the coupling to magnons and orbitons, we have performed the
calculation not only in the variational space with up to four
bosons of any kind, but also in subspaces where we further
restrict the number of individual bosonic flavors (e.g., up to
three orbitons and up to one magnon). This allows us, to
some extent, to trace the evolution of the spectral function
depending on the bosonic content of the QP’s cloud in its
ground state. By comparing these subspace projections to the
full calculation, we can infer which bosons dominate the QP
dynamics.

The spectral functions (10) were obtained for two repre-
sentative mixing angles φ with coexisting A-AF/C-AO spin-
orbital order, φ = 0 and φ = π/6. They occur at finite Hund’s
exchange η > 0 near the orbital degeneracy, Ez ≈ 0. We have
selected η = 0.16, which is representative for the AO order
in KCuF3 considered here and close to what is reported in
earlier studies [20,56–60]. This value ensures that for both
the φ = 0 and φ = π/6, A-AF/C-AO phases appear as the
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FIG. 2. The spectral functions A(k, ω) (10) (shown by intensity of brown/yellow color) in partial and full variational space for φ = 0 and
J = 0.1 (left) and J = 0.5 (right). The dashed-blue line indicates the free charge dispersion, εkφ . The numbers in the upper-left corner indicate
the maximal number of magnons and orbitons, respectively. The number in the upper-right corner gives the size of the variational space. The
high-symmetry points are 
 = (0, 0), X = (π, 0), Y = (0, π ), S = (π/2, π/2), and M = (π, π ). Parameter: η = 0.16.

actual ground states within the range of variation of the crystal
field [56].

The first A-AF/C-AO spin-orbital phase is obtained for
Ez > 0 close to the boundary between A-AF and AFz̄ phases;
see Fig. 1. It is characterized by symmetric and antisymmetric
linear combinations of the basis orbitals, {|z̄〉, |z〉}; a finite
value of Ez > 0 is needed because of the spin order which
is AF in the (a, b) planes and FM along the c axis. The sec-
ond spin-orbital phase discussed below has the orbital angle
φ = π/6 (A1), which is obtained for Ez < 0; see Fig. 1. It
corresponds to the other extreme characterized by the external
orbital field favoring the Kugel-Khomskii orbitals.

We start by analyzing the spectral functions for the
φ = 0 phase in the Ising limit; see Fig. 2. The occupied |±〉
orbitals (7) form an AO state, shown in Fig. 3. The Ising
limit used here is defined by neglecting both spin and orbital
fluctuations, i.e., discarding all terms containing operators
other than Sz or T z. Note that the spectral function density
maps are presented in a nonlinear ∝ tanh scale, which allows
us to highlight the low-amplitude states that would otherwise
not be visible. The results are shown for two values of the

FIG. 3. The in-plane orbital arrangement of the φ = 0 phase.

superexchange constant, J = 0.1 (canonical value; note that
the definition of J ≡ t2/U here does not include the factor
of 4, conventionally present in the standard t-J model [1])
and J = 0.5 (weak-interaction regime; this is not a physically
relevant limit but it is useful for exploring the interdependence
between orbitons and magnons in the system, and its effect on
the polaronic physics).

Each panel in Fig. 2 is marked in the upper-left corner with
the maximal number of magnons and orbitons, respectively,
allowed in a given subspace, and in the upper-right corner
with the size of the variational Hilbert space. The lower-
right panel marked with the word “Full” presents the full
expansion for up to four bosons (without further specifying
individual bosonic flavors). The dashed-blue line indicates the
free charge dispersion εkφ , and serves as a reference energy for
the QP state. As expected, the dressing with bosons creates a
QP which is energetically more stable than the free particle;
however, this comes at the cost of an increased effective
mass and decreased mobility. Note that this is all consistent
with standard polaronic physics. The renormalization is much
smaller for the large-J limit. This can be easily understood
because the cost of creating any boson is proportional to J ,
so the bigger J is, the more expensive it is to create a big
bosonic cloud. Thus, for large J , there will be fewer bosons
in the cloud, resulting in smaller renormalization of physical
properties.

Remarkably, by comparing the full results against the
partial results, we can see that in the strong-interaction case
(J = 0.1), the QP behaves predominantly like in the orbiton-
rich cases (1,3) and (2,2). To highlight this effect, we extract
the ground-state energy and spectral weight for all these
solutions and plot them against each other; see Fig. 4. As
is evident, the full solution tends to include more orbitons
and fewer magnons. However, a cloud consisting of only
orbitons would not be sufficient to achieve the optimal QP
energy either. Thus, we can already see that this is an in-
trinsically spin-orbital system, where the interaction of all
degrees of freedom (charge, spin, and orbital) is crucial
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FIG. 4. The extracted QP ground-state energies E (k) (left) and
spectral weights Z (k) for the full fourth-order expansion (right),
and the respective subspace expansions for the exchange constants
J = 0.1 (upper panels) and J = 0.5 (lower panels). Parameter:
η = 0.16. Labeling conventions are the same as in Fig. 2.

to achieve the complete understanding of the underlying
physics.

Even more interestingly, if we now make the same compar-
ison for the weak-interaction limit (J = 0.5), we see that this
time the QP band behaves most like the magnon-rich solutions
(3,1) and (2,2). This suggests a crossover, controlled by the
exchange parameter J , between orbiton-rich and magnon-rich
QP clouds. This happens because magnons have lower energy
and are cheaper to create than orbitons. In the large-J limit,
only very few bosons are created and they are more likely to
be magnons, which therefore dominate the dynamics of the
resulting QP. In contrast, for small J , all bosons are cheap(er)
and orbitons dominate by means of geometric effects, i.e., the
fact that the charge can couple to them by moving in any of the
three principal cubic directions, in contrast to magnons which
couple only when the particle moves along the single AF c
direction [55].

Figure 5 shows the spectral functions for φ = π/6 with
J = 0.1. The orbital order itself is depicted in Fig. 6. The
first striking observation is that the bands show hardly any
dispersion at all, except for the purely orbitonic solution
(0,4). This is easily understood if we look at the free charge
dispersion εkφ , which vanishes for φ = π/6, as illustrated by
the flat dashed-blue reference line in Fig. 5. In other words,the
unrenormalized particle is completely localized and the cou-
pling to bosons does not change that in any substantial way.

FIG. 5. The full and partial spectral functions A(k, ω) (10) for
the φ = π/6 phase. Parameters: J = 0.1 and η = 0.16. Notation and
conventions are the same as in Fig. 2.

The tiny dispersion observed in the orbitonic solution is due to
Trugman loops [2], which require a 2D AO order, just like we
have in this system, and the existence of at least three-boson
clouds, hence its appearance in the purely orbitonic solution.
In fact, a very tiny dispersion can also be seen in the (1,3)
panel; however, there the interference between orbitons and
magnons clearly suppresses the Trugman processes [2], again
underlining the crucial role of orbiton-magnon interplay in the
physics of these systems.

The lack of dispersion in this orbital phase is a straight-
forward consequence of a special symmetry of the orbital
order in the Kugel-Khomskii state. Namely, as evident from
Fig. 6, the φ = π/6 detuning corresponds to the occupation
of AO y2 − z2/z2 − x2, so the hopping process would require
the charge to move from a lobe of one such orbital to the
nodal point of the neighboring orbital, which is forbidden by
symmetry of the wave function.

The results presented thus far point to an interesting
experimental possibility. Namely, the orbital order should
be discernible from a spectral experiment: the flatter the
QP band, the closer the occupied orbitals should be to the

FIG. 6. The in-plane orbital arrangement of the φ = π/6 Kugel-
Khomskii phase.
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FIG. 7. Comparison of the density of states for the two major or-
bital phases discussed in this paper, φ = 0 and φ = π/6. Parameters:
J = 0.1 and η = 0.16.

φ = π/6 phase. Naturally, determining the exact phase
might not be simple; however, verifying the validity of the
φ = π/6 case to which most local density approximation
(LDA) studies seem to point [58–62] should be possible owing
to the dispersionless character of this phase. Having said that,
the issue of an insulating sample and thus strong charging dur-
ing an angle-resolved photoemission spectroscopy (ARPES)
experiment might pose a barrier even to this verification.

There is another possibility, however, owing to the QP
mass renormalization. Going back to Fig. 2 and comparing
the QP vs the free-charge dispersion, we see that not only is
there a difference in bandwidth between the two cases, but
also the symmetry between the 
 and M points is significantly
suppressed, with the QP band at the M point being much
flatter and having a greatly reduced spectral weight. If we
would now integrate the spectrum to produce the density
of states (DOS) for this system, we would see that the QP
DOS for a dispersive phase should be highly asymmetric,
whereas the dispersionless phase should be characterized by
a sharp and completely symmetric QP DOS, as verified in
Fig. 7. Thus, the orbital phase could be inferred, even if only
approximately, from the shape and asymmetry of the QP DOS.
In turn, the DOS can be obtained from a scanning tunneling
microscope experiment for which sample charging might be
less problematic.

In all of the above, we have assumed an Ising interaction
or, to put it differently, that the effect of quantum fluctuations
is negligible. This is a reasonable assumption because fluctu-
ations generally are less important in higher dimensions and
here we are dealing with an ostensibly 3D system. Having said
that, however, the AO order can at the same time be thought of
as 2D and the AF order as 1D. While it has been established
that the role of fluctuations for the eg orbital pseudospin in a
2D planar subsystem is indeed negligible [54], the same as-
sumption seems less justified for magnetic excitations. Apart
from the dimensionality of the corresponding order, another
argument is that the relative lack of importance of orbitonic
fluctuations comes from the fact that the orbiton spectrum is
gapped, which is not the case for magnons. This is why it is

FIG. 8. Comparison of the spectral functions in the Ising ap-
proximation (ising) and the one including full magnetic fluctuations
(mfluct), and for the two orbital phases, φ = 0 and φ = π/6. To
highlight the effect, we take the weak-interaction regime, J = 0.5.
Notation and conventions are the same as in Fig. 2. Parameter:
η = 0.16.

reasonable to neglect the orbital fluctuations while including
magnetic fluctuations, in order to explicitly establish whether
or not they are relevant.

Fortunately, magnetic fluctuations may be fairly easily
included within MA by allowing arbitrary fluctuations, but
only in the vicinity of the propagating charge (the variational
space cutoff is controlled with exactly the same cloud spatial
criteria as before), since these are the only ones which will
affect the QP dynamics. Fluctuations occurring far from the
charge will instead only affect the nature of undoped regions
far from the particle, affecting the overall energy. However,
as long as the classical ground state is close enough to the
true quantum state realized for a given set of parameters,
this would only be reflected by a constant shift of the entire
spectrum, which is not a physically significant effect.

To illustrate the role of fluctuations, we present a compar-
ison between the Ising solution and the one including local
fluctuations for both angles, φ = 0 and φ = π/6; see Fig. 8.
As their effect proves to be rather elusive, we focus on the
weak-interaction limit J = 0.5, where the changes can be
more readily observed. One immediately sees the huge dif-
ference in the size of the variational spaces, even though only
magnetic fluctuations (albeit in all three cubic directions) are
considered here. This, however, has surprisingly little overall
effect on the QP dispersion. While their effect seems more
considerable for the excited states, these are likely not fully
converged anyway, so that part of the spectra is not sufficiently
reliable for comparison. A tiny dispersive effect can also be
observed, most readily visible in the φ = π/6 phase; however,
it is much too small to be of any practical importance.
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There is, however, one interesting feature, namely, the
pure gain in energy experienced by the QP ground state,
indicative of a stronger binding of the QP, which, however,
does not affect its dynamical properties. In particular, while
the gain for the φ = 0 phase is relatively small, the one
observed for φ = π/6 is considerable. This difference could
be indicative of a subtle quantum effect arising from the
spin-orbital coupling in the system. Clearly, the importance
of the magnetic fluctuations strongly depends on the orbital
phase in the system and, in particular, the fluctuations in
the φ = π/6 phase grow particularly strong. This indicates
that the magnetic order becomes less classical in character,
which is likely caused by the system decoupling into 1D
AF chains. There is ample evidence of the actual KCuF3

exhibiting a 1D quantum AF character [36], so this would
seem to point to the actual orbital phase in that system being
close to φ = π/6, something that was long proposed based
on electronic structure calculations using LDA. Here we were
able to arrive at similar conclusions through indirect means
and by a completely different methodology.

V. SUMMARY AND CONCLUSIONS

We have developed an effective spin-orbital superexchange
model for an e3

g system, and computed the single-polaron
spectrum resulting when a single charge is doped in the
system by using the semianalytical, variational momentum av-
erage method for calculating Green’s functions. This allowed
us not only to obtain the relevant spectral functions, but also to
gain insight into the nature of the magnetic and orbital order
in the system. Thus we were able to demonstrate a number of
subtle quantum effects arising from the interaction between
the charge, orbital, and magnetic degrees of freedom.

One such effect is the change of the character of the pola-
ronic quasiparticle cloud from being dominated by orbitons
to being dominated by magnons; this is controlled by the
strength of the superexchange interaction J . This behavior,
although only a theoretical prediction due to the impossibility
of experimentally tuning the parameter J in such a wide range
of values, nonetheless points towards a strong interplay be-
tween orbital and magnetic degrees of freedom in this model.
It should come as no surprise, then, that their intermingling
should also crop up in other properties of the system, some of
which might be more readily accessible to experiment.

One possible experimental consequence lies in the quasi-
particle dispersion being strongly dependent on the orbital
order in the system which, coupled with the polaronic sup-
pression of the symmetry between the 
 and M points of the
Brillouin zone, suggests that the quasiparticle density of states
should be particularly sensitive to the orbital order in these
systems. In turn, this would point towards scanning tunneling
microscopy as a promising tool for an experimental probe of

the orbital order type. We thus propose that the orbital order
could be inferred by investigating the amplitude to width ratio
and the asymmetry of the density of states peaks.

Finally, we point out that the orbital order around the
detuning angle φ = π/6 seems to drive the magnetic system
closer towards the 1D AF chain. Indeed, the already available
results of neutron-scattering experiments [36] demonstrate a
nearly ideal 1D spin-liquid behavior. We suggest that this is a
strong indication that the orbital order in KCuF3 is likely to
be close to φ = π/6.
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APPENDIX A: THE MEAN-FIELD GROUND STATE

In this Appendix, we provide the more technical details
concerning the derivation of the effective polaronic spin-
orbital model that is the basis of our calculation. In order
to find the classical orbital ground state, we parametrize the
orbital basis in terms of a standard rotation of the {z̄, z} basis.
However, since the reference, field-free order is composed of
alternating |±〉 states (7), the rotation is most conveniently
parametrized with an angle ±(π/2 + φ), where the sign de-
pends on the orbital sublattice A or B,

|φA〉 = cos

(
π

4
+ φ

2

)
|z̄〉 + sin

(
π

4
+ φ

2

)
|z〉,

|φB〉 = cos

(
π

4
+ φ

2

)
|z̄〉 − sin

(
π

4
+ φ

2

)
|z〉. (A1)

This choice also serves to transform the underlying AO order
to an FO order, effectively eliminating the bipartite division of
the lattice in the reference state. It should be stressed that this
operation does not affect the actual ground state; it merely
changes its representation to one that is more convenient—
it spares us the trouble of distinguishing between bosons
on different sublattices (cf. Ref. [7]). Now φ will indicate
a detuning from the field-free orbital order, and the angle
between the occupied orbitals on the two sublattices will be
2φ (i.e., in general, the bases on different sublattices will not
be mutually orthogonal).

To find the relation between the orbital field Ez and the
detuning angle φ in Eqs. (A1), we start by writing out the
superexchange Hamiltonian in the new basis:

H⊥
I = J

∑
〈i j〉⊥c

(
AηSi · S j + 1

4
Bη

){
2Cη

Aη

− 1 − (2 cos 2φ + 1) T z
i T z

j − (2 cos 2φ − 1) T x
i T x

j

+ 2eiQRi sin 2φ
(
T z

i T x
j − T x

i T z
j

) ∓
√

3
(
T x

i T z
j + T z

i T x
j

)}
, (A2a)
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H‖
I = 2J

∑
〈i j〉‖c

(
AηSi · S j + 1

4
Bη

){
Cη

Aη

− 1

2
+ 2 sin2 φ T z

i T z
j + 2 cos2 φ T x

i T x
j − eiQRi sin 2φ

(
T x

i T z
j + T z

i T x
j

)}
, (A2b)

H⊥
II = −JCη

∑
〈i j〉⊥c

(
Si · S j − 1

4

){[
sin φ

(
T z

i + T z
j

) ∓
√

3eiQRi cos φ
](

T z
i − T z

j

)

− eiQRi cos φ
(
T x

i − T x
j

) ∓
√

3 sin φ
(
T x

i + T x
j

)}
, (A2c)

H‖
II = 2JCη

∑
〈i j〉‖c

(
Si · S j − 1

4
+ Ez

4JCη

)[
sin φ

(
T z

i + T z
j

) − eiQRi cos φ
(
T x

i + T x
j

)]
, (A2d)

where the last term incorporates the orbital field Hz. Here,
Q = (π, π, 0) is the ordering vector for the C-AO state, and
the resulting phase factor encodes the alternating nature of the
orbital order. The symbol ⊥ / ‖ refers to the cubic directions
with respect to the c axis. Note that the various superexchange
terms of Eq. (2) have been split into terms quadratic in {T z

i }
operators (HI) and linear in {T z

i } operators (HII). The Hund’s
exchange (4) is now encoded in the three prefactors (if η = 0,
one finds A0 = B0 = C0 = 1):

Aη = 1 − η

(1 + η)(1 − 3η)
, (A3a)

Bη = 1 + 3η

(1 + η)(1 − 3η)
, (A3b)

Cη = 1

1 − η2
, (A3c)

which themselves result from various combinations of the
ri multiplet parameters listed above. Note that the exchange
Hamiltonian has also been shifted in energy so that the Ising
energy for the ground state of the system is set to zero. This
is done merely for reasons of convenience, so that the exci-
tation energies are easier to track once we start considering
excitations in the system.

Next we evaluate the mean-field energy assuming the
classical ground state to be A-AF/C-AO, as is known to be
the case in KCuF3. We find

EMF = 1

4
J (Bη − Aη ) sin2 φ − 1

8
J (Aη + Bη )(2 cos 2φ + 1)

− J

(
Cη − Ez

2J

)
sin φ. (A4)

This expression is then minimized with respect to the detuning
angle φ, yielding the relation

Ez = J[2Cη − (Aη + 3Bη ) sin φ]. (A5)

This identity can now be used to eliminate Ez from the
Hamiltonian by replacing it with the detuning angle φ. Note
that if we now set φ = 0, we will, seemingly paradoxically,
get Ez = 2JCη, i.e., a finite orbital field corresponding to the
field-free case. This is due to the fact that the superexchange
Hamiltonian already includes terms linear in pseudospin op-
erators which behave like an orbital field, and the external
field works to compensate these terms. In other words, the
exchange Hamiltonian breaks cubic symmetry by itself and
the above estimate is the orbital field needed to restore it. On
the other hand, the case Ez = 0 corresponds to φ = π/6 in

the 2D orbital model [63], which is the Kugel-Khomskii state
composed of alternating (y2 − z2)/(z2 − x2) states. These two
limits are commonly cited as the extreme possibilities for the
orbital order in this system. The actual orbital order realized
in the system will likely be bounded by these two extremes,
and in fact could be, to some extent, tuned by means of an
axial pressure ∝ Ez applied along the c axis.

APPENDIX B: FERMION-BOSON POLARONIC MODEL

To go beyond the mean-field ground state, we derive the
effective Hamiltonian transforming the physics of a single
charge doped into a spin-orbital model to a fermion-boson
many-body problem. To that end, we transform the kinetic
Hamiltonian to the same basis as the one considered in the
last section, so that the entire model is expressed in compatible
representations. This leads to the following hopping terms:

H⊥
t = − t

4

∑
〈i j〉⊥c,σ

{[(1 − 2 sin φ)d†
iσ0d jσ0

− 2eiQRi cos φ (d†
iσ0d jσ1 − d†

iσ1d jσ0)

∓
√

3 (d†
iσ0d jσ1 + d†

iσ1d jσ0)

− (1 + 2 sin φ)d†
iσ1d jσ1] + H.c.}, (B1a)

H‖
t = − t

2

∑
〈i j〉‖c,σ

{[(1 + sin φ)d†
iσ0d jσ̄0

− eiQRi cos φ (d†
iσ0d jσ̄1 + d†

iσ1d jσ̄0)

− (1 − sin φ) d†
iσ1d jσ̄1] + H.c.}, (B1b)

where the 0 (1) indices denote the ground (excited) orbital
states, respectively.

Finally, following Martínez and Horsch [7], we repre-
sent the spin and orbital degrees of freedom using a slave
boson representation. This is achieved by expanding the
(pseudo)spin operators around the assumed mean-field ground
state by means of a Holstein-Primakoff transformation,

d†
i↑0 = f †

i , d†
i↓0 = f †

i bi,

d†
i↑1 = f †

i ai, d†
i↓1 = f †

i aibi, (B2)

where b†
i creates a spin excitation at site i, a†

i creates an orbital
excitation, and f †

i creates a spinless fermion which represents
the charge degree of freedom, where the index 0 indicates the
site i in the ground state, while 1 means that the respective
site hosts an excited state. Thus, a charge can be added to
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BIENIASZ, BERCIU, AND OLEŚ PHYSICAL REVIEW B 100, 125109 (2019)

the system only if it is locally in its (classical) ground state;
otherwise, if a boson occupied the considered site, first it has
to be removed before the charge can be added. Also note
that the on-site bosonic Hilbert space is restricted to (2S + 1)
states and, since both the spin and the pseudospin have length
1/2, each site can host not more than one boson of each
kind. This local constraint applies to every site and is fully
taken into account in our calculations through the variational
technique employed.

The exchange Hamiltonian also has to be transformed into
its bosonic representation, which is done by means of the
Holstein-Primakoff transformation of the spin operators,

Sz
i = 1

2 − b†
i bi, S+

i =
√

1 − b†
i bi bi, S−

i = b†
i

√
1 − b†

i bi,

(B3)
and similarly for the pseudospin operators, but in terms of
orbiton operators {ai, a†

i }. There are two issues that are still
worth pointing out concerning this transformation. First, the
Sz

i operators are the ones that most readily introduce higher-
order terms into the Hamiltonian, and thus are principally
responsible for interbosonic interactions, which can have
profound effects for low-dimensional physics [64] but which
nonetheless are all too often neglected in techniques relying
on the LSW approximation. It is therefore worth mentioning
that in our variational method, this part of the transformation

is not strictly necessary, as the Sz
i operators merely “count”

the Ising energy of the bosons and thus their effect can be
discerned directly from the configuration of the system. Or,
to put it differently, in our method it would actually be more
cumbersome (although possible) to calculate the energy in the
LSW approximation than it is to do it exactly.

Second, the square-root factors in the fluctuation operators
S±

i are conventionally treated by Taylor expansion and trun-
cation at second order, to be consistent with the LSW approx-
imation. However, here again, one should realize that these
factors merely serve to impose the restriction of a single boson
per site, and thus this constraint can be taken into account
by excluding from the variational space the configurations
which violate it. Therefore, with our variational technique, we
can bosonize the exchange interactions without the need to
abandon any of the interbosonic interactions or constraints.

Applying these transformations decouples the original
fermions into their constituent charge, spin, and orbital de-
grees of freedom. The free-charge propagation Ht , as well as
its coupling to the bosonic degrees of freedom, will now be
described by the kinetic Hamiltonian, which after the above
transformations reads

Ht = T + V⊥
t + V‖

t , (B4)

where

T = − t

4

∑
〈i j〉⊥c

(1 − 2 sin φ)( f †
i f j + H.c.) =

∑
k

εkφ f †
k fk, (B5a)

V⊥
t = t

4

∑
〈i j〉⊥c

{[2eiQRi cos φ(a†
j − ai ) ±

√
3(a†

j + ai ) + (1 + 2 sin φ)a†
j ai](1 + bib

†
j ) f †

i f j + H.c.}

− t

4

∑
〈i j〉⊥c

[(1 − 2 sin φ)bib
†
j f †

i f j + H.c.], (B5b)

V‖
t = − t

2

∑
〈i j〉‖c

{[(1 + sin φ) − eiQRi cos φ(ai + a†
j ) − (1 − sin φ)aia

†
j ](bi + b†

j ) f †
i f j + H.c.}, (B5c)

and εkφ = − 1
2 t (1 − 2 sin φ)(cos kx + cos ky) is the free-

electron dispersion. We emphasize that it depends on the
orbital order (A1) through the angle φ, and vanishes when
φ = π/6. The free-charge hopping term T is restricted to
the ab planes because of the magnetic order alternating in
the perpendicular direction c, which thus requires creation
or annihilation of a magnon when the charge hops in that
direction.

The remaining terms couple the charge to the bosonic
degrees of freedom, and some of them are high-order
many-body interactions, sometimes coupling the charge to
multiple bosons at the same time. Treating these interac-
tions with a technique relying on the LSW approximation
would be impossible, whereas this can be done within the
variational momentum average approach, as presented in
Sec. IV.
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(2019).

[46] J. Kuneš, I. Leonov, M. Kollar, K. Byczuk, V. Anisimov, and
D. Vollhardt, Eur. Phys. J. Spec. Top. 180, 5 (2010).
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