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‘We use the momentum average approximation to study the ground-state properties of strongly bound bipolarons
in the double-well electron-phonon (el-ph) coupling model, which describes certain intercalated lattices where
the linear term in the el-ph coupling vanishes due to symmetry. We show that this model predicts the existence of
strongly bound yet lightweight bipolarons in some regions of the parameter space. This provides an alternative
mechanism for the appearance of such bipolarons, in addition to long-range el-ph coupling and special lattice

geometries.
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I. INTRODUCTION

The coupling of charge carriers to lattice degrees of freedom
(phonons) plays an important role in determining the properties
of a wide range of materials such as organic semiconductors
[1,2], cuprates [3—8], manganites [9], two-gap superconductors
like MgB, [10-13], and many more.

When a charge carrier becomes dressed by a cloud of
phonons, the quasiparticle that forms—the polaron—may have
quite different properties from the free particle, such as a
larger effective mass and renormalized interactions with other
particles. One particularly interesting effect of the latter is the
formation of bipolarons, where an effective attraction mediated
by exchange of phonons binds the carriers together. If the
binding is strong enough, the two phonon clouds merge into
one, resulting in a so-called SO bipolaron. Weaker binding,
where each polaron maintains its cloud and the binding is
mediated by virtual visits to the other carrier’s cloud, is also
possible and results in a S1 bipolaron [14,15].

The existence of bipolarons is interesting for many reasons.
For instance, it has been suggested that Bose-Einstein conden-
sation of bipolarons might be responsible for superconduc-
tivity in some high-7, materials [16]. For this to occur, the
bipolaron must be strongly bound so it can survive up to high
temperatures. However, such strong binding generally requires
strong electron-phonon coupling. In most simple models of
el-ph coupling such as the Holstein model [17], this also
results in a large effective mass of the bipolaron [14,15] which
severely reduces its mobility and makes it likely to become
localized by even small amounts of disorder.

For this reason, much of the theoretical work on bipolarons
is focused on finding models and parameter regimes for
which the bipolaron is strongly bound yet relatively light. So
far, successful mechanisms are based either on longer-range
electron-phonon interactions [18-21] or on special lattice
geometries such as one-dimensional ladders or triangular
lattices [22]. Note that here we are interested in lattice models
valid for the description of small bipolarons. Large bipolarons
have also been studied extensively, see for e.g. Refs. [23]

Here we show that the recently proposed (short-range)
double-well el-ph coupling model [24] also predicts the

“cadolphs @phas.ubc.ca

1098-0121/2014/90(8)/085149(7)

085149-1

PACS number(s): 71.38.Mx, 63.20.kd, 63.20.Ry

existence of strongly bound bipolarons with relatively low
effective mass in certain regions of the parameter space, thus
revealing another possible mechanism for their appearance.
Our study uses the momentum average (MA) approximation
[24-27], which we validate with exact diagonalization in an
enlarged variational space. Since in the single-particle case the
dimensionality of the underlying lattice had little qualitative
impact, we focus here on the one-dimensional case.

This work is organized as follows. In Sec. II we introduce
the Hamiltonian for the double-well model and in Sec. III we
discuss the methods we use to solve it. In Sec. IV we present
results for the bipolaron binding energy and effective mass,
and in Sec. V we summarize our conclusions and an outlook
for future work.

II. MODEL

The double-well el-ph coupling model was introduced in
Ref. [24] for the single polaron case. For ease of reference, we
repeat some of its motivation and introduction here.

The model is relevant for crystals whose structure is such
that a sublattice of light ions is symmetrically intercalated
with one of much heavier ions; the latter are assumed
to be immobile. Moreover, charge transport occurs on the
sublattice of the light ions. An example is the one-dimensional
intercalated chain shown in Fig. 1(a). Another example is
a two-dimensional CuO layer, sketched in Fig. 1(b), where
the doping holes move on the light oxygen ions placed in
between the heavy copper ions. In such structures, because in
equilibrium each light ion is symmetrically placed between
two immobile heavy ions, the potential felt by a carrier
located on a light ion must be an even function of that
ion’s longitudinal displacement from equilibrium, i.e., the first
derivative of the local potential must vanish. As a result, the
linear electron-phonon coupling is zero by symmetry, and one
needs to consider the quadratic coupling. This is what the
double-well el-ph coupling model does.

Starting from the single-polaron Hamiltonian describing
double-well el-ph coupling, introduced in Ref. [24], we add
the appropriate terms for the many-electron problem to obtain

H=T+Q)Y blb,+UY iy
+8 ) el O + 5,2+ g0l +b,)'. (1)
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FIG. 1. (Color online) Sketch of the crystal structures discussed
in this work: (a) 1D chain, and (b) 2D plane, consisting of light atoms
(filled circles) intercalated between heavy atoms (empty circles).
In the absence of carriers, the ionic potential of a light atom is
a simple harmonic well. In the presence of a carrier, the ionic
potential of the light atom hosting it remains an even function of
its longitudinal dis- placement, so the linear el-ph coupling vanishes.
In suitable conditions the effective ionic potential becomes a double
well. (Reproduced from Ref. [24].)

Here, c¢;, and b; are annihilation operators for a spin-o
carrier at site i, and a phonon at site i, respectively. 7
describes hopping of free carriers on the sublattice of light
ions in an intercalated lattice like that sketched in Fig. 1.
For simplicity, We consider nearest-neighbor hopping only,

T=—t Do m ¢;, + H.c., although our method can also
treat longer—range finite hopping [28]. The next two terms
describe a single branch of dispersionless optical phonons with
energy €2, and the Hubbard on-site Coulomb repulsion with
strength U. The last two terms describe the el-ph coupling
in the double-well model. As mentioned, in lattices like that
sketched in Fig. 1, the coupling depends only on even powers
of the light-ion displacement §%; o bj + b; (the heavy ions are
assumed to be immobile). As a result, the lowest order el-ph
coupling is the quadratic term whose characteristic energy
&> can have either sign, depending on modeling details. As
discussed at length in Ref. [24], the interesting physics occurs
when g, < 0 so that the el-ph coupling “softens” the lattice
potential. For sufficiently negative g, this renders the lattice
locally unstable in the harmonic approximation and requires
the inclusion of quartic terms in the lattice potential. For
consistency, one should then also include quartic terms in
the el-ph coupling. As detailed in Ref. [24], under reasonable
assumptions the quartic lattice terms can be combined with
the quartic el-ph coupling term on sites hosting a carrier and
ignored on all other sites. Because the resulting quartic term
contains contributions from both the lattice potential and from
the el-ph interaction, it should not be assumed to be linear
in the carrier number, unlike the quadratic term which arises
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purely from el-ph coupling. Instead, we use the general form

0, if n=0
e =g 1, if m=1
a, if n;=2,

where n; =) cmcm is the number of carriers on site i, and
o is a constant between 1 and 2. Setting o = 2 assumes that
quartic lattice effects are negligible compared to the quartic
el-ph terms, whereas o = 1 is the opposite extreme. For the
remainder of this paper we set @ = 1, so that g(l) = gftz) = gu.
This case leads to stronger coupling, since a lower g4 results
in deeper wells that are further apart [24], and thus represents
the parameter regime we are interested in. Physically, this
describes the situation where the quartic lattice terms are much
larger than the quartic el-ph coupling; however they are still
negligible compared to the quadratic lattice terms and therefore

can be ignored at sites without a carrier.

III. FORMALISM

We compute the bipolaron binding energy and effective
mass using the MA approximation [24-27]. Since we are
interested in strongly bound bipolarons which have a large
probability of having both carriers on the same site, the version
of MA used here is the variational approximation that discounts
states where the two carriers occupy different sites. This results
in an analytic expression of the two-particle Green’s function
which is used to efficiently explore the whole parameter space.
The accuracy of this flavor of MA is verified by performing
exact diagonalization in a much larger variational subspace
(details are provided below). In the regime of interest the
agreement is very favorable, showing that the effort required to
perform the analytical calculation for a flavor of MA describing
a bigger variational space is not warranted.

A. Momentum average approximation

We define states with both carriers at the same site, |i) =

C; ¢C;[¢|0>’ and states of given total momentum k with both
carriers at the same site,

7 1 kP
M=7ﬁgwh>

The bipolaron dispersion Ebp(l_é) is obtained from the lowest
energy pole of the two-particle Green’s function

G(k,w) = (k|lw — H +in]'[k),
where 7 — 07 is a small convergence factor. The effective
bipolaron mass is 1/myp = 82Ebp/8k2|k:0. Throughout this
workweseth =1,a = 1.

We split the Hamiltonian into H = Hy + H; with Hy =
T+Q > b;[b[ describing the free system and H; containing
the interaction terms. We apply Dyson’s identity G(w) =
Go(w) + G(w)H; Go(w) where

Go(w) = [0 —Ho +in]™"
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is the resolvent of H, and we also define

Gok.) = [ Go@)lF) = — 3 :
°’ ' N & otin—elki—§) —e@

as a noninteracting two-particle propagator, where e(l?) is the
free carrier dispersion. N — oo is the number of light-ion
sites of the lattice. In one dimension (1D), Go(lz,a)) equals
the momentum-averaged single-particle free propagator in
one dimension for an effective hopping integral 2¢ cos(k/2),
for which an analytic expression is known [29]. In higher
dimensions, such propagators can be calculated as discussed
in Ref. [30].

As mentioned, in a variational sense the MA used here
amounts to neglecting all states where the carriers are not on the
same site. This approximation is justified for the description of
the strongly bound on-site (S0) bipolaron, which is expected
to have most of its weight in the sector where both carriers
are on the same site. Another way to look at this is that the
bipolaron ground-state energy in the strongly bound case must
be well below the noninteracting two-particle continuum, and
the free two-particle propagator will have vanishingly small
off-diagonal matrix elements at such energles Ignoring them,
the equatlon of motion (EOM) becomes G(k w) & Go(lz,a)) +
(k|G(a))H1 k)Go(k,w), and thus

oIkR

Gk.0) = Go<kw><1+2 f[(gz+6g4)F1(kwl)

+ g (k,w.i) + UFo(ié,w,m),

where Fn(lz,w,i) = (l_<'|CA;(a))bj’2" |i) is a generalized two-
particle propagator. Equations of motion for the F,, propagators
are obtained in the same way, and read

Fy(k,w,i) = go(w — 2n2){ga(2n)* F,_»(k,w,i)
+1(2¢2 + 624)2nY + 4g42n) 1F,_ (k,00,0)
+ (8ngs + 12ng4 + 24n’gs + U)F,(k,w,i)
+ (282 + 684 + 8ngy) Fyp1 (k,,1)
+ g4 Fua(k,,0)), )

where we use the shorthand notation x = x!/(x — n)! and
have introduced the momentum-averaged free two-carrier
propagator,

2o(@) = (i|Go(w)li) =

Z Go(k.)

o 1
N2 F w—e(lz—(})—e(cf)+in.

In 1D, go(w) equals the diagonal element of the free propagator
for a particle in two dimensions, which can be expressed in
terms of elliptical functions and calculated efficiently [29].
Similar considerations hold in higher dimensions [30].

The equations of motion are then solved following the
procedure described at length in Refs. [24,27]. For consistency,
we sketch the main steps here. First, we introduce vectors

= (Foy_1,F>,)" for n >0 (the arguments k,w,i of the
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propagators are not written explicitly from now on). Note that
with this definition, Wy = (F_1, Fp), yet F_; is not properly
defined. However, the final result has no dependence on F_j,
as we show below. The equations of motion are then rewritten
interms of W, toread y,, W, = o, W,,_1 + B, Wy, 1. The matrix
elements of the 2 x 2 matrices «,,,8,,Y,, are easily read off
Eq. (2).

Defining A, = [y, — BnAnii] oy, the physical solution
of these recurrence equations is W,, = A, W, _;. Introducing
a sufficiently large cutoff N. where Wy, = 0, we can then
compute A and have W; = A Wy, i.e.,

F — A Fo) _ (an an) (Fo
F> Fo a1 ax Fy )’

One can easily check that a;; = a;; = 0. Thus, we obtain
Fi = ap Fy and F, = ax Fy. Substituting these results back
into the EOM for G we obtain

th

T

G(k.0) = Go(k, w>{1+2 (282 + 6ga)ar

+ gaaxn + U]Fo(/;»w,i)}

Since, by definition, G(l_é,w) Z R Fo(k w,i), and given
that ay,,a;; are functions of w only, we ﬁnd
1

Gk,w) = .
(2g2 + 6g4)ai — gaan — U

Gyl (k,w) — )

Note that the coefficients a;; and ap; depend on all
parameters of the model, including U. As a result, the position
of the lowest pole of Eq. (3) is not simply linear in U, although
this is a good approximation for the strongly bound bipolaron.

We emphasize that this MA expression becomes exact in
two limiting cases. First, in the atomic limit + — O the free
propagator has no off-diagonal terms and thus no error is
introduced by dropping them from the equations of motion.
Second, without el-ph interactions (g, = 0) the Hamiltonian
reduces to the Hubbard model which is exactly solvable in
the two-particle case [31]. In both cases MA gives the exact
solution.

B. Exact diagonalization

The results obtained via MA as outlined above are checked
against exact diagonalization results in a bigger variational
subspace designed to describe well the strongly bound SO
bipolaron. Hence, we only consider states where all the
phonons are located on the same lattice site and at least one of
the two electrons is close to this cloud. The basis states are of
the form

tk -Fi

ton o
|k n,81,8) = Z \/_b Citsy, T l-‘rts7 ~L|O)

with the constraint that either §; or §, is below a certain cutoff.
In addition, a global cutoff N, is imposed on n + &; + §,. The
ground state within the variational space is then computed
using standard eigenvalue techniques.

The main difference between these exact diagonalization
(ED) and MA results is that MA discards contributions from
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configurations where the carriers are at different lattice sites.
Comparing the two therefore allows us to gauge the importance
of such terms, and to decide whether the speed gained from
using the analytical MA expressions counterbalances the loss
of accuracy.

IV. RESULTS

From now on we focus on the 1D case, since our previous
work [24] suggests that going to higher dimensions leads to
qualitatively similar results.

Before discussing the MA results, we first compare them
to those obtained from ED in the larger variational subspace
discussed above. A typical comparison (for r =1, 2 =0.5
and g4 = 0.1) is shown in Fig. 2. The left panel shows the
ground-state energy and the right panel shows the inverse
effective mass of the bipolaron. In the regime where the
bipolaron is strongly bound, i.e., where its energy decreases
fast and its effective mass increases sharply as |g»| increases,
we find excellent agreement for the energy. The masses also
agree reasonably well, but MA systematically overestimates
the bipolaron mass. This is a direct result of the more restrictive
nature of the MA approximation: By discarding configurations
where the carriers occupy different sites, the mobility of the
bipolaron is underestimated and thus the effective mass is
overestimated. Nonetheless, this error is not very large, and
only means that the bipolarons in the double-well model are
even lighter than calculated by MA. Due to similarly good
agreement in all cases we verified, for the remainder of this
work we only discuss results obtained with the more efficient
MA method.

We emphasize that our approximation for computing the
Green’s function is only valid in the regime of strong binding
and does not describe correctly the physics at weak coupling.
Since neither MA nor ED, as implemented here, allow for
the formation of two phonon clouds, neither describes the
formation of a weakly bound S1 bipolaron (where polarons
form on neighboring sites and interact with each other’s clouds
via virtual hoppings), nor the dissociation into two polarons
as the coupling is further decreased [14,15]. Accuracy in

(a)

-10

-15

FIG. 2. (Color online) (a) Bipolaron ground-state energy, and
(b) inverse effective mass for t = 1, 2 = 0.5, g4 = 0.1, computed
with ED (solid black line) and MA (red dots).
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FIG. 3. (Color online) Ground-state properties (total energy and
inverse mass) of the SO bipolaron and two independent polarons
fort =1, Q2 =0.5and g4 = 0.2, 0.1, and 0.05 for (a), (b), and (c),
respectively. For all panels, U = 0.

these parameter regimes can be improved by applying more
sophisticated—yet much more tedious—versions of MA or
ED for suitably expanded variational spaces. For the purpose
of this work, however, we want to focus on the strong-coupling
regime, where our results are accurate.

We show the ground-state properties of the bipolaron
compared to those of two single polarons in Figs. 3 and 4
for two different values of €2. In all those panels, we have set
U = 0 for simplicity; the role of finite U will be discussed at
the end of this section.

The ground-state energy of the bipolaron behaves qualita-
tively similarly for all values of 2 and g4 in that it shows
a kink at some g, where the slope becomes steeper. This
signifies the onset of the strong-coupling regime where the
bipolaron energy is well below the energy of two independent
polarons, consistent with a strongly bound bipolaron. At
weaker coupling the results are not accurate since, as explained

F ()8, =005
L | L |

— m/mp \
[ __ 2m/mbp 1 | U I \ 1

PR R R BN LN
00005 10 1.5 00 05 10 -15 0.0 05 -1.0 -1.5
g, g, g,

FIG. 4. (Color online) Ground-state properties (total energy and
inverse mass) of the SO bipolaron and two independent polarons

fort =1, 2=2 and g4 = 0.2, 0.1, and 0.05 for (a), (b), and (c),
respectively. For all panels, U = 0.
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above, our version of MA cannot describe the dissociation of
the bipolaron.

Consider now the behavior of the effective masses. For all
parameters considered here, we see that the single-polaron
mass m, starts out slightly above the free electron mass m,
then decreases until it is almost as light as the free electron,
before increasing again. This turnaround in the polaron mass is
due to partial cancellation effects of the quadratic and quartic
el-ph coupling terms, as discussed in Ref. [24]. We observe
that when the bipolaron is already quite strongly bound, the
single polaron can still be very light. Empirically, we find that
in the strong-coupling regime mp, ~ m exp(—y A,/ $2), where
Ap = =2t — E,, is the single-polaron binding energy and y
is a small numerical prefactor. This behavior is also found in
the Holstein model [17] in the strong-coupling limit, where
y=1 A= —g2/ Q. The prefactor y can be much smaller
in the double-well model because of the nature of the ionic
potential. This was explained in detail in Ref. [24], and will be
discussed in the context of bipolarons later in this section.

The bipolaron effective mass fluctuates around the value of
2m in the weak-coupling regime. As explained above, here our
method does not describe two independent polarons, but two
independent free electrons whose effective mass should just
be 2m. However, the two-particle spectral function in this case
does not have a low-energy quasiparticle peak. Instead, it has
a continuum spanning the allowed two-particle continuum.

These issues disappear at stronger coupling where a
strongly bound bipolaron forms and MA becomes accurate.
The figures show that here the bipolaron quickly gains mass
with increased coupling strength |g|, and that this increase
is stronger the smaller g4 is. Note that a smaller g4 actually
means stronger coupling, because the wells are deeper and
further apart [24].

The same data is displayed in a different way in Fig. 5,
where we show the magnitude of the bipolaron binding
energy A =2E, — Ey,;, and the ratio of bipolaron to single-
polaron masses, mp,/2m,. The strongly bound bipolaron
regime (where the results are accurate) is reached when these
quantities vary fast with g,. In particular, the results for
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FIG. 5. (Color online) Binding energy A and effective-mass ratio
myy/2m;, of the bipolarons for Q = 0.5 and 2 = 2 at different values
of g4.
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TABLE I. Some example values of the bipolaron binding energy
and effective mass.

Q 84 |&2| AJt m**/2m

0.5 0.1 0.9 1.25 8.3
0.2 1.3 1.48 4.4

2 0.1 1.3 3.11 59
0.2 1.5 1.03 1.8

myp/2my, show that here the bipolaron mass increases much
more quickly than the polaron mass. This is not surprising
for models like this, where the phonons modulate the on-site
energy of the carrier. At strong coupling the results can
be understood starting from the atomic limit # = 0O, treating
hopping as a perturbation. Since both carriers must hop in order
for the bipolaron to move, one expects that my, /m o (mp/ m)?;
indeed, we find this relation to be valid for a wide range of
parameters for our model.

Although in this regime the bipolaron quickly gains mass,
there are parameter ranges where its mass is still rather light
while the bipolaron is strongly bound. Examples of such
parameters are given in Table I. We note that qualifiers such
as “strongly bound” and “light” are subjective. In our case,
we take the bipolaron as strongly bound when the binding
energy A/ > 1 and the ratio my,/2m < 10-20, consistent
with other references [18,22].

Light but strongly bound bipolarons were previously found
for long-range el-ph coupling [18]. The explanation is that
in such models, carriers induce a spatially extended lattice
deformation, not one that is located in the immediate vicinity
of the carrier as is the case at strong coupling in local el-ph
coupling models. Because of their extended nature, the overlap
between clouds displaced by one lattice site (which controls
the effective hopping) remains rather large, meaning that the
polarons and bipolarons remain rather light in such models.

Even though it is due to a local el-ph coupling, the
mechanism resulting in light bipolarons in our model is
qualitatively similar, as illustrated in Fig. 6. In the linear
Holstein model the effect of an additional carrier added
to a lattice site is to shift the equilibrium position of the
ionic potential. The ionic wave functions corresponding to an
empty and an occupied site therefore have only small overlap,
which strongly reduces the effective carrier hopping. In the
double-well model, in contrast, the ionic wave function for the
doubly occupied site has appreciable overlap with the ionic

single well double-well

potential

ionic wf /\

FIG. 6. (Color online) Ionic potential (above) and ionic ground-
state wave function (below) in the single-well and double-well
models. Solid lines correspond to the situation without an additional
carrier, and dashed lines to the situation with an additional carrier.
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FIG. 7. (Color online) Bipolaron energy (left) and effective mass
(right) as a function of the Hubbard U, forr =1, 2 = 0.4 and g4 =
0.1. Similar results are found for other parameters if U is not large
enough to lead to bipolaron dissociation.

wave function for an empty or a singly occupied site and thus
does not reduce the effective hopping as much.

We conclude with a brief discussion of the effects of a finite,
repulsive U. For a very strongly coupled SO bipolaron, most
of the weight is in states with both carriers on the same site.
In this regime, the binding energy decreases (nearly) linearly
with U, App(U) = Ayp (U = 0) — U. However, increasing U
increases the energy cost of the SO state and thus encourages
hybridization with off-site states, which results in an overall
smaller effective mass. We show results for the bipolaron
energy and effective mass as a function of U in Fig. 7. We
stay within the regime U < Ay, where the bipolaron remains
strongly bound. As predicted, the energy of the bipolaron
increases linearly with U, which in turn means that the binding
energy Ay, decreases linearly with U. The effective mass
also decreases (approximately) linearly with U. This can be
demonstrated for the strong-coupling limit via second order
perturbation theory in the hopping. Following along the lines
in Refs. [14,15], the effective hopping of the SO bipolaron is
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of the form
_{2e-VA/Q

mbp1 & legf ~ 2E,—U
for some constant y. We see that the mass itself decreases
linearly with U, with a steeper slope the larger the effective
mass at U = 0.

In essence, provided that it is not large enough to break
the bonding, a finite U does not change the overall picture
and merely tunes the balance between the bipolaron binding
energy and its effective mass.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have investigated the bipolaron ground-
state properties in the dilute limit of the double-well el-ph
coupling model at strong coupling. We have demonstrated
that due to the particular nature of the carrier-induced
ionic potential, the double-well bipolaron can be strongly
bound while remaining light compared to the bipolaron in
the Hubbard-Holstein model. This suggests a new route to
stabilizing such bipolarons, in addition to previously discussed
mechanisms based on long-range el-ph coupling or special
lattice geometries. We expect that a combination of these
mechanisms will lead to even lighter bipolarons.

In this work, we have used and validated a simple extension
of the momentum average approximation to the two-carrier
case. While this generalization is appropriate to describe a
strongly bound SO bipolaron, it cannot describe the off-site
(S1) bipolaron that forms at larger Hubbard repulsion U,
or the unbinding of the bipolaron at even larger U. A more
sophisticated version of MA, currently under development,
will give us insight into the full phase diagram of the double-
well model.
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