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We propose a highly efficient numerical method to describe inhomogeneous superconductivity by using

the kernel polynomial method in order to calculate the Green’s functions of a superconductor. Broken

translational invariance of any type (impurities, surfaces, or magnetic fields) can be easily incorporated.

We show that limitations due to system size can be easily circumvented and therefore this method opens

the way for the study of scenarios and/or geometries that were unaccessible before. The proposed method

is highly efficient and amenable to large scale parallel computation. Although we only use it in the context

of superconductivity, it is applicable to other inhomogeneous mean-field theories.
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In the past decades the mean-field description of inho-
mogeneous superconductivity through the Bogoliubov–
de Gennes (BdG) equations has been highly successful in
uncovering novel phenomena. Because in the presence of
broken translational invariance one needs to use a real
space formulation, the numerical simulation becomes
computationally involved. While alternative approaches
to inhomogeneous superconductivity like quasiclassical
approximations or Ginzburg-Landau methods exist, the
need for a fully quantum-mechanical approach has become
imperative. This is manifest in questions regarding high-Tc

superconductors for which the superconducting coherence
length is of the order of the Fermi wavelength, or in
questions regarding nanoscale superconductivity for which
the superconducting coherence length is comparable to the
system size.

The BdG equations have been extensively used in a
multitude of situations where translational symmetry is
broken. Examples include the description of quasiparticles
in s-wave or d-wave vortices [1–3], self-consistent calcu-
lation of order parameters and local density of states
(LDOS) near surfaces and interfaces [4–9], self-consistent
description of magnetic and nonmagnetic impurities in
superconductors [10–12], calculation of dc Josephson cur-
rents through weak links [5,6], uncovering of the effect of
electron confinement on superconductivity [13], etc.

Throughout these studies several methods of solving the
BdG equations have been employed. After a discretization
of the mean-field Hamiltonian one can use the straightfor-
ward approach of diagonalizing exactly the resulting
Hamiltonian. Although exact diagonalization can in prin-
ciple treat any inhomogeneous situation, it has severe
limitations on the size of the discretization grid. There
exist several ways of circumventing these limitations if
the translational symmetry is recovered either by consid-
ering surfaces and interfaces or highly symmetric geome-
tries (cylindrical or square). Supercell methods are also

used in order to increase the energy resolution of calculated
local densities of states.
A completely different approach is based on approxi-

mating the Green’s functions. In this case the eigenenergies
will appear as poles of the Green’s function while the
wave-function amplitudes will appear as weights of the
poles. One such method is the recursive method based on
the Lanczos procedure [9,14]. The approach we use here is
similar in spirit but has many benefits when compared to
the recursive Lanczos method. We will show how the
Green’s function can be efficiently expanded in series of
Chebyshev polynomials. This Letter is organized as fol-
lows: first we will introduce a general model Hamiltonian
which is typically used for describing inhomogeneous
superconductors. We will next present the Chebyshev-
Bogoliubov–de Gennes (CBdG) method and show, by an
example, how this method can be implemented.
The Bogoliubov–de Gennes equations are mean-field

coupled equations which describe the behavior of electrons
and holes in superconductors. If we consider second quan-
tization and work within the Nambu spinor formalism, a
general Hamiltonian describing superconductivity can be
written as follows:

H ¼ X
hi;ji

ð cyi"ci# ÞĤ ij

cj"
cyj#

 !
; (1)

where Ĥ ij is a 2� 2 matrix,

Ĥ ij ¼
�i �� �i

�?
i ��i þ�

 !
�ij þ

�tij �ij

�?
ij t?ij

 !
ð1��ijÞ:

(2)

�i describes an on-site potential due to impurities, � is the
chemical potential, tij describes hopping between nearest

neighbor sites, while �i (�ij) are the on-site (nearest-

neighbor) superconducting order parameters. The effect
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of a magnetic field is contained in the complex order

parameters through the usual Peierls phases tij ¼
jtijj expði �

�0

Rj
i AijdlÞ, where Aij is the vector potential

and �0 ¼ h=2e is the flux quantum.
The quantity of interest is the 2� 2 Green’s function,

which is defined as

�G ijð!Þ ¼ hvacj ci"
cyi#

 !
Ĝð!Þð cyj"cj# Þjvaci; (3)

where Ĝð!þ i�Þ ¼ ½!þ i��H ��1 and jvaci is the
vacuum. The diagonal and off-diagonal components are
the normal and anomalous Green’s functions:

�G 11
ij ð!Þ ¼ hci"jĜð!Þjcyj"i (4)

�G 12
ij ð!Þ ¼ hcyi#jĜð!Þjcyj"i�; (5)

where jcyi"i ¼ cyi"jvaci creates a spin-up electron and

jci#i ¼ ci#jvaci destroys a spin-down electron. For finite

temperatures the expectation value also contains a thermal
average.

As mentioned before, the Green’s function can be ap-
proximated by using a Lanczos procedure to invert the
Hamiltonian [9,14]. This method has proven to be efficient
mostly in the homogeneous case or when the Lanczos
procedure can be easily extrapolated. The need of extrapo-
lation is of utmost importance because, due to numerical
roundoff errors, the Lanczos procedure becomes unstable
due to loss of orthogonality. Reorthogonalization schemes
exist, but the method becomes less and less efficient.

We therefore propose another approach to approximate
the Green’s function. Our method is based on the kernel
polynomial method [15] which expands the single particle
Green’s function into a series of Chebyshev polynomials.

In order to be able to expand the Green’s function, one
first needs to rescale the Hamiltonian such that its spectrum
is contained in the ½�1; 1� interval. We therefore have to

work with the rescaled Hamiltonian ~H ¼ ðH � 1bÞ=a
and rescaled energies ~E ¼ ðE� bÞ=a, ~! ¼ ð!� bÞ=a,
where a ¼ ðEmax � EminÞ=ð2� �Þ and b ¼ ðEmax þ
EminÞ=2, where �> 0 is a small number. It is not essential
to have accurate bounds on the spectrum; thus a quick
Lanczos procedure to find Emax and Emin can be used.

Following Ref. [15] both the real and imaginary parts of
the Green’s function can be approximated by Chebyshev
polynomials. The components of the full Green’s function
can be written as

�G 11ð12Þ
ij ð ~!Þ ¼ �2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�!2
p X1

n¼0

a11ð12Þn ði; jÞe�in arccosð ~!Þ; (6)

with

a11n ði; jÞ ¼ hci"jTnðH Þjcyj"i=ð1þ �0;nÞ; (7)

a12n ði; jÞ ¼ hcyi#jTnðH Þjcyj"i=ð1þ �0;nÞ; (8)

where TnðxÞ ¼ cos½n arccosðxÞ� are the Chebyshev poly-
nomials of first kind and they obey the known recursive
relation Tnþ1ðxÞ ¼ 2xTnðxÞ � Tn�1ðxÞ.
The most important part of the calculation has now

shifted to the calculation of the expansion coefficients

a��n ði; jÞ. Fortunately, due to the recurrence relation be-
tween Chebyshev polynomials, these moments can be
obtained efficiently through a recursive procedure. If

we define jjni ¼ TnðH Þjcyj" i, then after using the recursive
property of Chebyshev polynomials we can write

jjnþ1i ¼ 2H jjni � jjn�1i; (9)

where jj0i ¼ jcyj"i and jj1i ¼ H jcyj"i. At each iteration step
a1�n ði; jÞ ¼ h�jjni, where h1j ¼ hci"j and h2j ¼ hcyi#j. It is
important to note at this point that in the recursion defined
by Eq. (9) the most expensive computation is a sparse
matrix-vector multiplication. Moreover, the Hamiltonian
matrix does not have to be stored since it always has the
same form, thus allowing for simple rules for the multi-
plication. Another great benefit of this method is the possi-
bility of obtaining in a single iteration all the normal and
anomalous Green’s functions, �G1�

ij ð ~!Þ, for all fig and f�g
when the starting vector is jcyj"i. As explained in Ref. [15],

because we can only keep a finite number of terms in the
expansion, one needs to convolute the approximated func-
tionwith kernel polynomials in order to remedy the effect of
Gibbs oscillations. This is imperative when approximating
Green’s functions because of their discontinuous nature; the
imaginary part is a summation over delta functions.Wewill
use the Lorentz kernel [15], since it allows for the manipu-
lation of a Lorentzian broadened delta function. The expan-
sion has the same form, but the coefficients have to be
multiplied by factors defined by the Lorentz kernel:

~a ��
n ði; jÞ ¼ a��n ði; jÞ sinh½	ð1�

n
NÞ�

sinhð	Þ ; (10)

whereN is the total number of terms in the expansion and 	
is a real number. If we write the Lorentzian approximation
as �ðxÞ ¼ 1=�lim�!0�=ðx2 þ �2Þ, there is a direct relation
between the broadening � and 	: � ¼ 	=N. This allows for
a good control over the broadening of theGreen’s function’s
features, whether used artificially at zero temperature or
naturally at finite temperature. As we will show later, in
certain situations where interference between parts of the
considered system is important, one needs a large number of
coefficients in order to accurately obtain the Green’s func-
tion. In that case the only way to keep the broadening
constant is by changing 	 accordingly.
Once the Green’s functions are known, it is straightfor-

ward to calculate physically relevant quantities. The local
density of states can be calculated as

N"ð#ÞðE; iÞ ¼ � 1

�
Im �G11ð22Þ

ii ðEÞ: (11)

The electron density is
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ni ¼
Z 1

�1
½N"ðE; iÞ þ N#ðE; iÞ�fðEÞdE: (12)

The order parameter, �ij ¼ Uijhci"cj#i is

�ij ¼ iUij

Z Ec

�Ec

�G12
ij ðEÞ½1� 2fðEÞ�dE; (13)

where Ec is a cutoff energy (Debye energy for conventional
superconductors or the bandwidth for cuprates). The cur-
rent density between grid points i and j is

J"ð#Þij ¼ �1

�

Z
Im½itij �G11ð22Þ

ij ðEÞ � it?ij
�G11ð22Þ?
ij ðEÞ�fðEÞdE:

(14)

One of the great benefits of this method is that the
Green’s function is calculated separately for each grid
point, thus allowing for a trivial parallel implementation.
An iteration can be started on a separate CPU for each grid
point with a given order parameter profile. Next, the order
parameter for that grid point is updated in the Hamiltonian
in order to achieve self-consistency. The convergence of
the self-consistent procedure is stable, and even more it is
more efficient than a similar procedure for the exact diag-
onalization method. Because information about each grid
point is obtained sequentially, updating the order parame-
ters after each recurrence will provide information to the
next grid point (preferably nearest neighbor). In addition,
grid points near or around inhomogeneities (impurities,
surfaces, or vortex cores) can be sampled with higher
frequency improving the convergence and thus reducing
the computational effort considerably. The present method
is general and it can be applied not only to any mean-field
Hamiltonian but also to more complex band structures,
multiband superconductivity, and even to three-
dimensional systems. Of course in these cases the number
of operations increases, but the calculation can be done
even on a desktop computer since the Hamiltonian is
sparse.

As mentioned earlier the closest in efficiency with the
Chebyshev method is the Lanczos recursion technique.
While there are similarities between the methods, for the
purposes of calculating Green’s functions and order pa-
rameters in inhomogeneous situations the Chebyshev ex-
pansion method is more efficient on many different issues.
Similarity between the methods comes from the fact that
recursive procedures can be applied in both cases with the
most expensive computation being a sparse matrix-vector
multiplication. However, the Lanczos procedure becomes
unstable because of loss of orthogonality between the
generated basis vectors, while the Chebyshev expansion
is stable with its moments decaying exponentially above a
given number of iterations (this is usually set by the desired
broadening, N > 	=�). Another benefit of using CBdG is
the fact that off-diagonal elements (e.g., correlations be-
tween nearest neighbors) of all the neighbors of site jii are
obtained from only one iteration. This is not possible
within the Lanczos procedure since only diagonal matrix

elements can be calculated; instead, if one wants to
calculate Gijð!Þ, separate iterations have to be started for

jii þ jji and jii � jji for each neighbor grid point jji. Yet
another benefit comes from the fact that the Chebyshev
expansion [Eq. (6)] is in fact a Fourier expansion with a
change of variable, and thus any integration of the Green’s
functions components over energy variables can be treated
as a Fourier transform and the integral can be evaluated by
using an efficient fast Fourier transform. Lastly, the
Chebyshev procedure allows for easy coupling to baths
[16] which are also described by Chebyshev expansions.
We show elsewhere that this allows for easy calculation of
transport properties of inhomogeneous mesoscopic
superconductors.
As an example we will show how the LDOS depends

on the number of Chebyshev coefficients. We consider first
a planar system composed of a normal metal of length
LN
x ¼ 380a and an s-wave superconductor of length

LS
x ¼ 20a while Ly ¼ 500a. In Fig. 1(a) we plot the

LDOS at the surface of the normal metal region.
Choosing � ¼ 0:1t such that 
 � 7a, we observe in the
LDOS the appearance of Andreev bound states below the
superconducting gap. In Fig. 1(b) we plot the moments of
the Chebyshev expansion for three iteration sequences.
Here we choose a constant broadening � ¼ 0:001t, thus
the coefficient 	 ¼ �N will modify the Chebyshev mo-
ments for each sequence. We observe an oscillatory
behavior of the Chebyshev moments which is given by
the interference of quasiparticles scattering off the normal-
metal–superconducting and normal-metal–vacuum inter-
faces. Note that the Chebyshev iteration is equivalent to
a propagation of a quasiparticle defined by the starting
vector jii. Interestingly, the LDOS is not converged within
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FIG. 1 (color online). LDOS and a11n at the surface of a planar
s-wave superconductor–normal-metal system. The parameters
are �s wave ¼ 0:1t, LS

x=a ¼ 380, LN
x =a ¼ 20, and Ly=a ¼ 500.
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� for N < 2000, instead a larger number of moments is
needed. It is exactly for these types of systems that a stable
method is essential. When interference between quasipar-
ticles scattered of distant regions of the system is impor-
tant, an accurate solution requires a large number of
moments. The recursion method based on the Lanczos
method is inefficient in these situations.

To further illustrate the power of the method we show in
Fig. 2 the LDOS for a s-wave SC–normal-metal–s-wave
SC of size ð50a–50a–50aÞ � 100a in the presence of a
nonmagnetic impurity in the normal region Vi ¼
V exp½�ðri � ri0Þ2=a� with V ¼ 2t and ri0 ¼ ð60a; 50aÞ.
The left-hand panels show the LDOS around the impurity
for various subgap energies while the right-hand panels
show the LDOS for a homogeneous normal system plus
the impurity. Modifications of the LDOS induced by the
impurity are seen in both cases, but for the s-wave–normal-
metal–s-wave system extra states are induced by the

interference of quasiparticles undergoing Andreev reflec-
tion at the superconductor–normal-metal interface and
specular reflection at the impurity site. Andreev states of
the clean multilayer system are destroyed by the impurity,
but new states appear due to impurity scattering.
In conclusion, we have introduced and demonstrated a

new method of solving the mean-field self-consistent BdG
equations by expanding the Nambu Green’s functions in
terms of Chebyshev polynomials. Because the method is
stable the results are arbitrarily accurate since the accuracy
is given by the number of moments kept in the expansion.
The most expensive numerical operation is a sparse matrix-
vector multiplication, thus allowing for large sized systems
to be solved with little memory requirements. Moreover,
since each grid point is calculated separately, the method is
amenable to trivial parallel implementations. The present
method can be easily expanded to consider spin-orbit
interactions, complex band structures, multiband super-
conductivity, multidimensional systems, and other inho-
mogeneous mean-field Hamiltonians.
This work was supported by the Flemish Science

Foundation (FWO-Vl), CIfAR, and NSERC. Discussions
with Frank Marsiglio are gratefully acknowledged.
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