
Correlated mesoscopic fluctuations in integer quantum Hall transitions

Chenggang Zhou1,* and Mona Berciu2

1Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
2Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

�Received 15 March 2005; published 1 August 2005�

We investigate the origin of the resistance fluctuations of mesoscopic samples, near transitions between
quantum Hall plateaus. These fluctuations have been recently observed experimentally by E. Peled et al. �Phys.
Rev. Lett. 90, 246802 �2003�; 90, 236802 �2003�; Phys. Rev. B 69, 241305�R� �2004��. We perform realistic
first-principles simulations using a six-terminal geometry and sample sizes similar to those of real devices, to
model the actual experiment. We present the theory and implementation of these simulations, which are based
on the linear response theory for noninteracting electrons. The Hall and longitudinal resistances extracted from
the Landauer formula exhibit all the observed experimental features. We give a unified explanation for the
three regimes with distinct types of fluctuations observed experimentally, based on a simple generalization of
the Landauer-Büttiker model. The transport is shown to be determined by the interplay between tunneling and
chiral currents. We identify the central part of the transition, at intermediate filling factors, as the critical region
where the localization length is larger than the sample size.
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I. INTRODUCTION

The integer quantum Hall effect1 �IQHE� is one of very
few instances where quantum effects are dramatically mani-
fested in the macroscopic world: if a two-dimensional elec-
tron system �2DES� is placed in a large perpendicular mag-
netic field B, its Hall resistance is quantized with high
accuracy to h / �ne2�, where n�0 is an integer. This quanti-
zation has been explained, within the noninteracting electron
approximation, as a bulk effect,2 as a topological invariant,3

and as an edge effect.4,5 The plateau-to-plateau transitions of
the Hall resistance, which are accompanied by peaks in the
longitudinal resistance, are understood as localization-
delocalization transitions with a universal scaling
relation.6–10

A different route to observing quantum effects in con-
densed matter physics, is to reduce the size of the device to
the so-called mesoscopic regime. If the size of the device is
smaller than the phase coherence length, quantum interfer-
ence between different paths leads to effects such as random
universal conductance fluctuations.11–13

What happens if the two are combined? The answer was
provided by recent IQHE experiments performed on a meso-
scopic sample.14–16 The expected quantum mechanical inter-
ference of electronic wave functions indeed causes reproduc-
ible patterns of fluctuations in the resistances near plateau-
to-plateau transitions, as the magnetic field is varied �in
macroscopic samples all resistances vary smoothly with B�.
Interestingly, the fluctuations of resistances measured with
different combinations of electrical contacts are not indepen-
dent; instead, various nontrivial correlations were observed.

In this paper, we investigate the mesoscopic IQHE within
the noninteracting electron approximation. Our numerical
simulations provide the basis for a unified explanation of
these unusual experimental observations, based on existing
theories of the IQHE and mesoscopic transport �some of
these results have been summarized in Ref. 17�. We begin

the paper with a brief review of the experimental observa-
tions in Sec. II. In Sec. III we describe in detail the model we
use, and our approach to solve the scattering problem, which
allows us to compute the conductance matrix from the mul-
titerminal Landauer formula. Our numerical results, which
exhibit all the experimentally observed symmetries and cor-
relations, are presented in Sec. IV. In Sec. V we explain how
these various correlations and symmetries arise. We analyze
the allowed structure of the conductance matrix, and show
how it directly determines the possible correlations between
fluctuations of various resistances. Finally, Sec. VI contains
the summary and a discussion of the relevance of these re-
sults.

II. SUMMARY OF EXPERIMENTAL RESULTS

The experimental sample is an InGaAs/ InAlAs hetero-
structure with impurities �indium atoms� distributed through-
out. As a result, the mobility is rather low �fractional quan-
tum Hall effect is not observed�. Even for the IQHE, only the
first few plateau-to-plateau transitions can be identified. The
experimental setup is sketched in Fig. 1. The Hall bar is
connected to six terminals, indexed 1 to 6. The sample is
considered mesoscopic because the characteristic size of its

FIG. 1. �Color online� Typical six-terminal Hall bar used in
experiments. In this configuration, the Hall resistance R14,62

H and the
longitudinal resistance R14,23

L are measured.
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central region between the four central terminals, of about
2 �m, is comparable to the phase coherent length L�

�2–3 �m.14–16

As customary, we denote the various resistances as
Rij,mn=Vmn / Iij, where Vmn=Vn−Vm is the voltage difference
measured between terminals n and m, when the current is
injected in the sample through terminal i and extracted
through terminal j. For example, to measure the Hall and
longitudinal resistances, a small current I is fed into terminal
1 and collected from terminal 4; no net currents are flowing
in the other four terminals. One can then measure two lon-
gitudinal resistances R14,23

L ,R14,65
L , and two Hall resistances

R14,62
H ,R14,53

H . For any macroscopic sample, the two resis-
tances of each pair are equal. For a mesoscopic sample, how-
ever, each resistance exhibits a different fluctuation
pattern.14–16

Another quantity of interest is the “two-terminal resis-
tance” R2t=R63,63. Experimentally, it is measured by sending
the current from terminal 6 to terminal 3, and measuring the
voltage difference between terminal 6 and terminal 3. Be-
cause of the two-point measurement, a contact resistance is
subtracted from the raw data.15

Following is a summary of the experimental findings.
�A� The IQHE transition from the nth to the �n+1�st pla-

teau, ∀ n�0, has three distinct regimes.15,16

�A1� On the high-B �low filling factor �� side of the tran-
sition, the Hall and the longitudinal resistances have distinct
fluctuation patterns, which, however, are correlated such that

R14,62
H + R14,23

L = R14,53
H + R14,65

L =
h

ne2 . �1�

�A2� In the central part of the transition, the Hall and the
longitudinal resistances still exhibit distinct fluctuation pat-
terns, but Eq. �1� is no longer satisfied.

�A3� On the low-B �high filling factor �� side of the tran-
sition, the Hall resistances become quantized to the expected
plateau value R14,62

H =R14,53
H =h / ��n+1�e2�. The two longitudi-

nal resistances exhibit significant, but this time identical
fluctuation patterns, with a maximum amplitude h / �n�n
+1�e2�, i.e., the difference between quantized Hall resis-
tances of the two neighboring plateaus.

�B� The transition inside the lowest Landau level n=0
shows the equivalent of �A3�: at high � one finds the regime
where R14,62

H =R14,53
H =h /e2, while the two longitudinal resis-

tances have identical fluctuation patterns with extremely
large amplitudes.14 Regimes A1 and A2 are replaced here by
the transition to the insulating phase, where all four resis-
tances increase rapidly with decreasing filling factor.

�C� Throughout each IQHE transition, the following iden-
tity is found to hold to high accuracy:15

R14,62
H + R14,23

L = R14,53
H + R14,65

L = R63,63. �2�

�D� Under the reversal of the magnetic field B→−B, the
longitudinal resistances verify the symmetry16

R14,23
L �B� = R14,65

L �− B� �3�

to high accuracy, although R14,23
L �B��R14,23

L �−B� and
R14,65

L �B��R14,65
L �−B� except in regime A3, on the high-�

side of the transition, where the two longitudinal resistances
have identical fluctuation patterns.

In the following, we show that all these observations can
be explained within the noninteracting electron approxima-
tion, using a combination of ideas about the IQHE and me-
soscopic transport.

III. NUMERICAL SIMULATIONS

A. The conductance matrix and the resistances

The linear response function of the six-terminal Hall bar
is the 6�6 conductance matrix ĝ that defines the relation-
ship between the currents flowing through the various leads,
and their voltages: I�=�	g�	V	. Here, I� is the current in the
lead �=1, . . . ,6. We use the convention I�0 �I
0� for cur-
rents coming out of �flowing into� the sample. V� is the volt-
age of the lead �.

Knowledge of the conductance matrix allows us to calcu-
late the various resistances in a straightforward way. In the
conventional setup, the current flows from lead 1 to lead 4

and therefore Î14= �−I 0 0 I 0 0�T. Without loss of generality,
we set I=1 �this is a linear response theory� and V4=0 �the
voltage differences are not affected if one of the terminals is

grounded�. After solving the 6�6 equation ĝV̂= Î14 for the
other five voltages, we can directly compute the various re-
sistances from their definitions:

R14,23
L = V2 − V3, R14,65

L = V6 − V5, �4a�

R14,62
H = V6 − V2, R14,53

H = V5 − V3. �4b�

The two-terminal resistance is determined similarly. In this

case, the electric currents flow from lead 6 to lead 3: Î63

= �0 0 I 0 0 − I�T. After solving the equation ĝV̂= Î63 for the
corresponding voltage distribution, we can calculate imme-
diately the two-terminal resistance �assuming again that I
=1�:

R2t = R63,63 = V6 − V3. �5�

Clearly, any other measurement can be simulated in a similar
fashion within this formalism. All resistances are functions
of various elements of the conductance matrix.

At T=0, the off-diagonal elements of the conductance
matrix ĝ are calculated18 by solving a multichannel scattering
problem, according to the Landauer-Büttiker formula

g�,	���EF� =
e2

h
�
i,j

�t�i,	j�EF��2. �6�

Here, t�i,	j�EF� is the amplitude of probability �transmission
amplitude� that an electron with the Fermi energy EF, which
is injected into the sample through the jth transverse channel
of lead 	, will scatter out of the sample into the ith trans-
verse channel of lead �. The sum over all the transverse
channels of the two leads simply gives the total probability
p	→��EF� for the electron with EF to scatter from lead 	 into
lead �, and thus
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g�,	���EF� =
e2

h
p	→��EF� . �7�

The diagonal elements of the conductance matrix can then be
calculated using the restrictions imposed by charge conser-
vation and gauge invariance:18 ��g�	=�	g�	=0. The diag-
onal elements are thus

g�� = − �
	��

g�	 = − �
	��

g	�. �8�

The finite-temperature generalization in the linear regime
is straightforward:

g�,	��,T� = �
−�

�

dE g�,	�E�	−
df�E�

dE

 , �9�

where f�E�= �exp�	�E−���+1�−1 is the Fermi distribution,
where 	=1/ �kBT� and � is the chemical potential.

The strategy for the numerical simulations of the IQHE in
mesoscopic samples is thus apparent. We have to solve a
complicated, multichannel scattering problem to find all the
amplitudes of transmission through the Hall bar. This allows
us to calculate the conductance matrix and therefore the vari-
ous resistances. This is repeated for many values of the
Fermi energy �corresponding to different filling factors � of
the Landau level� to obtain the traces of the resistances as �
changes. We now describe the details of our simulations.

B. The model

In this section we describe the model we use to numeri-
cally simulate IQHE transitions in mesoscopic samples. This
comprises the sample, the confining potential, the disorder
potential, the external leads, and their contacts to the sample.
As already stated, we assume noninteracting electrons—the
usual approximation when treating the IQHE. For numerical
convenience, we ignore Landau level �LL� mixing, although
the whole formalism can be straightforwardly extended to
include it. LL mixing can be ignored for large magnetic
fields �the case of interest to us�, when the cyclotron energy
is the largest energy scale in the problem. In the following,
we take the effective mass of the electron in the 2DES to be
that of GaAs/AlAs heterostructures, m*=0.067me, and use
−e ,e�0 for the electron charge.

1. The sample

In choosing the sample geometry, we face an apparent
problem. On one hand, when working with Landau levels, it
is convenient to consider a rectangular sample with periodic
boundary conditions along one axis, since in this case the
eigenstates of each LL are known analytical functions. This
simplifies considerably the calculation of various matrix el-
ements. On the other hand, however, a Hall bar with different
contacts on all sides, such as sketched in Fig. 1, is obviously
not consistent with periodic boundary conditions.

Our solution is to start with an area larger than the Hall
bar itself. For this enlarged area we impose cyclic boundary
conditions to generate a convenient basis for the Hilbert sub-
space of each LL. We then add a confining potential to

“carve out” the Hall bar from this larger area. This potential
is described in the next subsection.

Consider, then, 2D electrons in an area of size Lx�Ly,
with periodic boundary conditions in the y direction, and
placed in a perpendicular magnetic field B. The spectrum
consists of Landau levels of energy En�=
�c�n+1/2�
−g�BB�, where n=0,1 ,2 , . . . is the LL index, and �
= ±1/2 is the z-axis spin projection. The cyclotron energy is

�c=eB /m*.

If we use the Landau gauge A� = �0,Bx ,0�, the eigenfunc-
tions for the �n ,�� Landau level are19


r�n,X,�� =
e−iXy/l2

�Ly

e−�1/2l2��x − X�2
Hn� x − X

l
�

�2nn!��l
�� �10�

where l=�
c /eB is the magnetic length, Hn�x� are Hermite
polynomials, and �� are the z-spin eigenstates. The cyclic
boundary condition in the y direction requires that Xj
= j2�l2 /Ly, j�Z. Xj, the guiding center, characterizes the
location at which individual basis states are centered on the x
axis �see Eq. �11��. Since −Lx /2
Xj 
Lx /2, it follows that
−N /2
 j
N /2, and the degeneracy of each spin-polarized
LL is N=LxLy / �2�l2�. As we show later, N roughly defines
the size of the matrix involved in solving the scattering prob-
lem �several more states on the contacts have to be included
as well�.

In the simulations shown here, we use Lx=Ly =4 �m. For
a field of several tesla, this leads to a degeneracy N�104,
which can be easily handled by a generic PC cluster in a
reasonable amount of time. The main problem is that our
sample is shorter than the experimental sample �4 �m in-
stead of �20 �m. This means that terminals 1 and 4 �see
Fig. 1� are much closer to the other four terminals than in
reality. We fix this problem with the aid of the confining
potential, as described in the next subsection.

2. The confining potential

As stated before, we add a confining potential Vc�r�� to
define the Hall bar from the larger area Lx�Ly spanned by
the LL Hilbert subspace. We have tested several functional
forms, to see which are physically reasonable. Some of the
choices considered and their pros and cons are discussed in
the Appendix.

The confining potential used in simulations is shown in
Fig. 2. It is an odd function Vc�x ,y�=−Vc�x ,−y� and such
that Vc�x ,−Ly /2�=0. The Hall bar is the region −Ly /2
y

0/2 and −Lx /2
x
Lx /2, where the confining potential
is:

Vc�x,y� = − Vgap
�1 − ey/���1 − e−�Ly/2+y�/��

1 − e−Ly/2�

� �
�=±1

�=0,1

g��x − �Lx/2�, �y + �Ly/2�� . �11�

The first line describes the main features: the confining po-
tential is approximatively equal to −Vgap inside the Hall bar.
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We use Vgap=10 meV in our simulations, which is much
larger than the amplitude of the disorder potential �see be-
low�. As a result, for Fermi energies EF
0, the electrons are
confined to the region �−Lx /2 ,Lx /2�� �−Ly /2 ,0� which de-
fines the Hall bar to which contacts will be attached. Near the
Hall bar y edges at y=0,−Ly /2, the confining potential rises
smoothly to zero, on a length scale � �chosen to be 40 nm in
our simulations; see discussion in the Appendix�. The second
line describes the triangular potential barriers added in the
four corners of the Hall bar:

g�x,y� = sin2��x/lx + y/ly��/2���1 − x/lx − y/ly�

+ ��x/lx + y/ly − 1� , �12�

where lx and ly =Ly /6 define their spatial extension. These
barriers help isolate the contacts 1 and 4 from the other con-
tacts, and thus compensate for the shortness of our sample.
The alternative is to use a longer sample; this, however, re-
quires significantly more CPU time.

The symmetric choice we made for the confining potential
is not necessary; however, it is advantageous for several rea-
sons. If we take the disorder potential such that Vd�x ,−y�
=−Vd�x ,y� as well, then the particle-hole symmetry of the
total potential for the whole sample means that all quantities
must be symmetric with respect to EF=0. This allows us to
check and calibrate the numerical procedure, as discussed in
the Appendix.

Another advantage of a symmetric choice is that it allows
us to easily define the Hall bar filling factor for EF
0, as
being twice the filling factor of the LL �same number of
filled states, but half the area�. Strictly speaking, this is an
underestimate. At the Fermi energies EF�−Vgap of interest
to us �see below�, the effective area of the Hall bar is some-
what smaller, because of the shape of the confining potential.

3. The disorder potential

The experimental sample contains many In impurities
which serve as short range scattering centers. We simulate a
short-range disorder potential Vd�r�� by adding 18 000 Gauss-
ian scatterers randomly placed inside the Hall bar area
�−2,2� �m� �−2,0� �m. Each Gaussian scattering potential

is of the form Ae−r2/�2
, where � is uniformly distributed in the

interval �0.01,0.03� �m, and A is uniformly distributed in
�−0.6,0.6� meV.

A typical disorder realization within the Hall bar is shown
in Fig. 3, added to the confining potential for the Hall bar
side of the total sample. The disorder is very rough and short
range, almost white-noise-like. Moreover, its amplitude is
much smaller than that of the confining potential, as required
in order to have a well-defined Hall bar. Our simulations
scan a dense energy grid, typically in the range �−10.3,
−9.7� meV, close to a filling factor ��1/2 for the Hall bar.

4. The leads and the contacts

The IQHE is independent of the type of current-carrying
external leads used and of their contacts to the sample, pro-
vided that �i� the leads are reasonably good metals and �ii�
the contacts allow easy transfer of the electrons into and out
of the Hall bar. As a result, no detailed realistic modeling of
the leads and of the contacts is required. Instead, we can use
simple, idealized models that satisfy requirements �i� and
�ii�.

As in Ref. 19, we model each external lead as a collection
of independent, semi-infinite, perfectly metallic one-
dimensional tight-binding chains, parametrized by the
nearest-neighbor hopping amplitude t and uniform on-site
energy �0. Each such chain represents a transverse channel of
that lead, which carries currents independently of the other
channels in the lead. The choice for the hopping amplitude t
and on-site energy �0 has been discussed in detail in Ref. 19.
Briefly, t must be chosen so as to minimize the contact re-
sistance. We use t=0.1 meV, comparable to the major matrix
elements of the Hamiltonian matrix elements inside the
sample. To ensure that the leads can always carry currents to
and from the Hall bar, we use a “floating” spectrum, i.e., we
set �0=EF that we investigate. With these choices, require-
ment �i� is trivially satisfied.

The contacts are represented by matrix elements connect-
ing states on the leads �tight-binding sites� to contact states
in the Hall bar, which are appropriate linear combinations of
the LL basis states. The simplest choice is to add to the total
Hamiltonian a hopping term of the form −t�c0

†d+H.c.� for

FIG. 2. The confining potential Vc�r�� that we use. It varies
smoothly near the y edges, and has triangular barriers in the corners.
See text for details.

FIG. 3. �Color online� Total confining plus disorder potential
inside the Hall bar, −Ly /2
y
0 �compare with Fig. 2�.
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each chain �transverse channel�. Here, c0
† is the creation op-

erator for the last site of the chain, while d is the annihilation
operator for its corresponding contact state.

The contact states are chosen so as to satisfy the following
general requirements.

�1� Each contact state must be localized close to the re-
gion of the Hall bar where the corresponding lead is con-
nected.

�2� Different leads have orthogonal contact states, but
channels of the same lead may have nonorthogonal contact
states. This is because the direct connection �short circuit�
between different leads is forbidden.

�3� For numerical efficiency, it is convenient to preserve
the sparsity of the total Hamiltonian. We therefore require
that a contact state is a linear combination of a small subset
of the N LL basis states.

For leads 1 and 4 �the current source and drain, see Fig.
1�, the contact states must be localized close to the x
= ±Lx /2 ends of the sample. The LL basis states �n ,Xj ,��
with j� ±N /2 are exactly such states. For simplicity, we
take each of them to be a contact state, as in Ref. 19. Spe-
cifically, we assume that leads 1 and 4 have Nc transverse
channels each �we use Nc=100 in the simulations shown
here�. The mth transverse channel of the lead 1 �4� is coupled
through a hopping term to the LL basis state �n ,Xj ,�� with
j=−N /2+m, �j=N /2−m�∀1�m�Nc. With this choice, all
contact states are orthogonal to one another, and all three
requirements listed above are satisfied. This means that elec-
trons can be injected/removed from the Hall bar anywhere
within a strip of width Nc2�l2 /Ly from the x= ±Lx /2 edges,
through contacts 1 and 4.

For the voltage probes �leads 2, 3, 5, and 6� we need a
different strategy, since they are located on the y=−Ly /2 �y
=0� edges of the Hall bar. The contact states are chosen to be
of the form

d†�vacuum� = ��
m

e−�Xm − xc�2/a2+im��n,Xm,�� , �13�

where a is a parameter that controls the x and y extensions of
the wave function, �=0,� for y=0,−Ly /2, respectively, and
� is the normalization factor. As a changes, the shape of this
wave function changes from a strip in the x direction to a
strip in the y direction with fixed total area. We choose a
=0.2l so that the probability distribution of the contact states
overlaps with the region of smooth variation of the confining
potential near the y edges. In this case, the profile of the
contact states is an ellipse with its longer axis in the y direc-
tion �see Fig. 4�.

In Eq. �13�, xc specifies the location of the contact state
along the y edge. We use Nc /4 �25, in these simulations�
tight-binding chains for each of these leads, and correspond-
ingly Nc /4 different contact states. For leads 3 and 5, the
centers xc of their contact states are distributed uniformly in
the range �1,1.5� �m, while for leads 2 and 6 the range is
�−1.5,−1� �m. The summation in Eq. �13� is truncated so
that no pair of neighboring contact states contain the same
LL basis states in their expansions. The contact states on the
y=−Ly /2 edge �for leads 2 and 3� are magnetic translations

of the corresponding states of leads 5 and 6. The alternating
phase factor eim� insures that contact states on different y
edges are orthogonal to one another, so that shortcircuits are
avoided.

C. Solving the scattering problem

The total Hamiltonian is the sum of the sample Hamil-
tonian, the Hamiltonians for the six leads, and the terms
describing the contacts between sample and leads:

H = Hsample + �
�=1

6

Hlead
��� + Hcontacts. �14�

The numerical results presented here are obtained in the low-
est Landau level �LLL� with n=0 �the spin projection is ir-
relevant; calculations in higher LLs proceed in a similar
fashion�. For simplicity, in the following we denote the LLL
basis states by �Xj�=cj

†�vacuum���n=0,Xj ,��. In the Hilbert
subspace of the spin-polarized LLL, the Hamiltonian of the
sample is

Hsample = �
i=−N/2

N/2

�
j=−N/2

N/2


Xi�Vc + Vd�Xj�ci
†cj , �15�

where N=LxLy / �2�l2� is the number of states in a LL and an
overall constant LLL energy shift E0� has been ignored. The
matrix elements 
Xi�Vc+Vd�Xj� of the confining and disorder
potentials are computed as described in Ref. 19. Briefly, the
idea is that matrix elements of a plane wave are simple ana-
lytical functions:


Xi�eiq·r�Xj� = �Xi,Xj−qyl2e
�i/2�qx�Xi+Xj�e−Q/2

where Q= 1
2 l2�qx

2+qy
2�. �The generalization for higher LLs

and/or LL mixing is straightforward; see for instance Eq. �7�
in Ref. 19�. The strategy, then, is to perform a fast Fourier
transform of the potentials on a grid dense enough to repro-
duce them with high accuracy while maintaining the sparse-
ness of the Hamiltonian. The matrix element of each Fourier
component is given by the previous formula, allowing one to

FIG. 4. �Color online� Schematic drawing of the probability
density of a contact state on the y edge. It overlaps with the entire
region where the confining potential rises from −Vgap to Vgap, so
that it can inject or collect electrons of any Fermi energy from the
Hall bar.
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efficiently compute the matrix elements of the confining and
disorder potentials. Note that for higher LLs, the matrix ele-
ments differ only by a Laguerre polynomial. This is not
likely to influence the physics in a significant way and sug-
gests that numerical results for higher LLs should be quali-
tatively similar to those we present here for the LLL.

The leads are collections of Nc
� semi-infinite tight-binding

chains, each describing a transverse channel:

Hlead
��� = �

i=1

Nc
�

�
m=0

�

��0ci,m
���†ci,m

��� − t�ci,m
���†ci,m+1

��� + H.c.�� . �16�

Thus, ci,m
���† creates an electron on the site m�0 of the ith

transverse channel of lead �. We use the convention that site
m=0 is always the end site of the chain. The solution we
present can be trivially generalized to allow for different �0
and t parameters for each channel, as well as longer-range
hopping. However, since the physics in the sample is inde-
pendent of the lead details �as long as the leads can carry
currents to and from the sample� the simple choice we make
should be sufficient. The choices for t ,�0, and number of
channels Nc

� for each lead have been discussed previously.19

Finally, the contacts are described by matrix elements be-
tween sites m=0 of the various channels and their corre-
sponding contact states:

Hcontacts = − t�
�=1

6

�
i=1

Nc
�

�ci,0
���†di

��� + H.c.� �17�

where, as described in the previous section, each contact
state is a linear combination of LLL basis states, which is
localized in the appropriate region of the sample. Again, gen-
eralizations for more complex contacts can be easily incor-
porated, but should not be necessary.

We now have to solve a scattering problem for an electron
injected with energy E in the channel j of lead 	, which
means that we must find an eigenstate H��	j�=E��	j� of the
form

��	j� = 	�
�=1

6

�
i=1

Nc
�

�
m=0

�

�i,m
���ci,m

���† + �
j=−N/2

N/2

� jcj
†
�vacuum�

where—with our convention for indexing channel sites—
�i,m

���= t�i,	je
ikm+�ij��	e−ikm. In other words, there is an in-

coming wave with unit amplitude in channel �	j�, and out-
going waves with various transmission amplitudes in all
other channels. The momentum k�0 is such that E=�0
−2t cos k, i.e., it is the momentum of an electron with energy
E propagating on any of the tight-binding chains.

We solve this scattering problem by recasting it as a
finite-size, inhomogeneous system of linear equations, which
can be easily solved numerically. The unknowns are the am-
plitudes � j to find the electron in various LL states in the
sample, plus five terms �i,m

���, m=0, . . . ,4 for each channel
�clearly, if one knows the wave function at the first few sites
of a tight-binding chain, one knows the wave function along
the entire chain�. This solution is explained in detail in Ref.
19, for two leads with multiple channels. The redistribution
of the channels among more leads is trivial, since it only

involves changing some of the matrix elements to the appro-
priate contact states.

The solution of this inhomogeneous system of linear
equations, then, directly gives us the transmission coeffi-
cients t�i,	j�E� from which we compute the conductance ma-
trix �see Eq. �6��. This is repeated for many Fermi energies
EF corresponding to various filling factors �, to obtain the
dependence ĝ��� of the various elements of the conductance
matrix on the filling factor.

IV. NUMERICAL RESULTS

A. The conductance matrix for the LLL

Figure 5 shows numerical results for various matrix ele-
ments g�	��� inside the LLL �0
�
1�. The calculation is
for the disorder potential shown in Fig. 3, for a magnetic
field B=3 T. Two facts are immediately apparent. First, for
low filling factors ���0.34 for this disorder realization�, the
conductance matrix is symmetric to high accuracy, g�	

=g	�. From Eq. �7� it follows that p	→�= p�→	, i.e., the elec-
tron has the same �very small� probability to scatter in both
directions. This is expected, since we know that at low filling
factors, the states in the LLL are localized. Scattering from
one terminal to another is only possible through tunneling of
the electron from a state localized near one terminal, into a
state localized near the other terminal. Such tunneling ampli-
tudes are very small, explaining the small total probabilities
for such scattering. Tunneling is also time-reversal
symmetric—it happens with the same probability in both di-
rections, consistent with the symmetry of the conductance
matrix. These ideas will be made more precise in Sec. V,
where we analyze the general structure allowed for the con-
ductance matrix.

The second observation is that at high filling factors �
→1, we have g�,�+1→e2 /h �where if �=6, �+1=1� while
all other off-diagonal matrix elements become vanishingly
small. In other words, an electron injected through terminal
�+1 scatters with unit probability into terminal �. This be-
havior clearly signals the appearance of the edge states at
higher filling factors. These are chiral states, carrying elec-
trons only in the direction consistent with the orientation
�sign of� the magnetic field B. These states are localized on
the edges of the sample, on the “vertical walls” created by
the confining potential.

Using Eq. �8�, this shows that in the limit �→1, the con-
ductance matrix converges to the simple form:

ĝ��� →
�→1

ĝ�0� =
e2

h�
− 1 1 0 0 0 0

0 − 1 1 0 0 0

0 0 − 1 1 0 0

0 0 0 − 1 1 0

0 0 0 0 − 1 1

1 0 0 0 0 − 1

� .

�18�

The resistances corresponding to this asymptotic limit are

straightforward to find. Solving Î14= ĝ�0�V̂ for I=1, V4=0, we
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find V5=V6=h /e2, V2=V3=0. Equations �4a� and �4b� then
give R14,62

H =R14,53
H =h /e2, R14,23

L =R14,65
L =0. In other words,

the values expected for the first IQHE plateau, which indeed
is established when the LLL is more than half filled.

B. Fluctuations of resistances in the LLL

The fluctuations of the various resistances are due to
variations of ĝ��� from the asymptotic limit ĝ�0�. Using ĝ���
shown in Fig. 5, we calculate the resistances for all filling
factors 0
�
1. In Fig. 6 we plot the pair R14,65

H and R14,53
L

as a function of � near half filling. Three different regimes
are apparent. For ��0.46, RH=h /e2 and RL=0, correspond-
ing to the first IQHE plateau. For 0.42
�
0.46, RL exhibits
large fluctuations, but RH is still well quantized. This is pre-
cisely the type of behavior observed experimentally14 �see
Sec. II, point B�. For �
0.42 the transition to the insulating
phase occurs, and all resistances increase sharply as the wave
functions at the bottom of the LLL become more and more
localized, leading to progressively smaller values for the ma-
trix elements of ĝ �see Fig. 5�. This results in large fluctua-
tions of both resistances at T=0; these are smeared out at
finite T, as shown in Fig. 7.

Figure 7 shows all four resistances, for a different disor-
der realization, at T=11.6 mK. The two Hall resistances are
quantized to h /e2 down to ��0.4. Below ��0.46, both RL

exhibit fluctuations which quickly evolve into high peaks
around �=0.42 where both RH still have only minor devia-
tions from h /e2. Comparing the upper and lower panels of
Fig. 7, we see that the fluctuations of R14,23

L and R14,65
L are

almost identical in this regime. Below ��0.4 is the transi-
tion to the insulating phase.

The resistances in the insulating phase in Figs. 6 and 7 are
not perfectly similar to the experimental results.14 In the ex-
periment, even at the lowest temperature, the rise in RL is
less steep and less noisy than the behavior shown by our
simulations. This is because when the Fermi energy resides
among the low-�, strongly localized states of the LLL, the
charge transport described here is no longer the dominant
mechanism for conduction. Temperature-assisted hopping
conductivity and other inelastic scattering processes are

FIG. 5. �Color online� Representative conductance matrix ele-
ments, in units of e2 /h, as a function of �. The left panels show g23,
g62, g45, g14, while the right panels show g32, g26, g54, g41. The top
three left �right� panels characterize transport in �against� the direc-
tion of the edge currents. The bottom panels show the negligible
direct transport between the current source and drain. For each pair,
the traces are almost identical on the left, but very different on the
right of the vertical line.

FIG. 6. �Color online� A pair of RL and RH for the disorder
shown in Fig. 3 and 0
�
1. RL shows strong fluctuation before
quantization of RH is destroyed. The data are calculated at T=0.
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likely to contribute to the conductance matrix more than the
“band” conductance matrix which the simulation actually
calculates. Therefore, we do not claim to have a realistic
description of the insulating phase here. However, closer to
half filling the matrix elements of ĝ become reasonably
large, elastic scattering becomes the dominant mechanics for
conduction and our simulations describe well the behavior
observed experimentally.

C. The conductance matrix of higher LL

The conductance matrix when the Fermi level is in a
higher LL can be obtained from the conductance matrix of
the LLL using the superposition principle.20 We simply add a
contribution ĝ�0� for each completely filled LL to the matrix
ĝ��� describing the response of the LL hosting the Fermi
energy �in this context, 0
�
1 denotes the filling factor of
the LL hosting the Fermi energy, not the total filling factor�.
As discussed, ĝ�0� describes transport through the edge states,
which is the only possible contribution of a completely filled
LL. Indeed, we see that if EF is such that n LLs are com-
pletely filled, according to the superposition principle we
have ĝ=nĝ�0�. This immediately leads to the solutions RH

=h / �ne2�, RL=0, i.e., the nth IQHE plateau, as expected.
The validity of the superposition principle �which we take

for granted here�, is based on the belief that the IQHE tran-
sition can be described within one single LL, and that each
plateau-to-plateau transition is in the same universality class.
Wei et al.7 experimentally confirmed this hypothesis. Shahar
et al.20 further developed this idea by mapping the transition
between adjacent IQHE plateaus to the insulator-to-QH tran-
sition in the LLL.

The superposition principle relies on several conditions,
which are satisfied in our simulations. �1� One must confirm
that for a single LL, as the Fermi energy is raised and �
→1, the conductance matrix ĝ→ ĝ�0� at reasonable filling
factors, close to the center of the LL. We have already shown
that our simulations satisfy this for the LLL. Higher LLs
should behave similarly, since the only difference is a simple
change in the matrix elements of the disorder plus confining

potential �see Eq. �15� and discussion following it�. �2� The
cyclotron gap is large enough to justify neglect of the LL
mixing. This is certainly valid for ��n+0.5, because here
the charge transport is dominated by processes in the bulk of
the Hall bar, where the disorder is much smaller than the
cyclotron gap. However, for the spatially close edge states of
different LLs, one does expect inter-Landau-level and spin-
dependent scattering to become relevant.21 As a result, we do
not claim that the edge states produced in the single-LL
simulation are necessarily realistic. However, this has no in-
fluence on the conductance matrix. The reason is simple:
there is no backscattering among the edge states.5 All edge
states near the same boundary of the sample carry currents in
the same direction, irrespective of their LL index and spin
polarization. Scattering among these edge states results in a
unitary transformation which conserves the total probability
to carry electrons from one terminal to the next. As a result,
even though inclusion of the filled LL states in the simulation
may change some details of the edge-state wave functions,
the total conduction matrix ĝ is not affected. This, in con-
junction with the significant economy of CPU time when LL
mixing is neglected, explains why we perform the simula-
tions for a single LL.

D. Fluctuations of resistances in higher LLs

Using the superposition principle, the fluctuations of the
resistances for 1
�
2 can be calculated using the conduc-
tance matrix ĝ��−1�+ ĝ�0�, where ĝ��� is the LLL conduc-
tance matrix already analyzed and the second term is the
contribution of the filled LL.

The resistances R14,62
H and R14,23

L corresponding to the dis-
order shown in Fig. 3 are plotted in the lower panel of Fig. 8.
The three regimes found experimentally �see Sec. II, points
A1–A3� are clearly observed within the transition from the
first to the second IQHE plateau. Their �approximate� bound-
aries are marked by vertical lines in Fig. 8, as a guide to the
eye. At low � �high B�, the fluctuations of RH and RL are
correlated such that RL+RH=h /e2. This is seen more clearly

FIG. 7. �Color online� Both pairs of RL and RH for a different
disorder. Both RL show strong fluctuations before the quantization
of the RH disappears. The results correspond to T=11.6 mK.

FIG. 8. �Color online� A typical transition from the first to the
second IQHE plateau at T=0. Lower panel: R14,62

L and R14,23
H in

units of h /e2. Upper panel: The sum R14,62
L +R14,23

H =R14,63 of the
resistances shown in the lower panel, and R2t=R63,63 �shifted by
−0.5h /e2�. Vertical lines indicate the boundaries of the critical re-
gion. See text for more details.
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in the upper panel, where their sum R14,62
H +R14,23

L =R14,63 is
plotted. At high � �low B� RH=h / �2e2� is quantized while RL

exhibits strong fluctuations. In the intermediate regime, both
RH and RL have strong, uncorrelated fluctuations. The upper
panel of Fig. 8 compares RL+RH with R2t �R2t is shifted by
0.5h /e2�. As found experimentally,15 �Sec. II, point C� the
two curves are almost identical. Only minor differences at
high � are visible.

Figure 9 shows a set of data calculated for T=11.6 mK
with a different disorder realization. Both pairs of resistances
are shown �the lower panels�. The thermal average was per-
formed using Eq. �9�. At finite T, the traces are much
smoother than at T=0. The scale of the fluctuations in Fig. 9
is comparable to that of the experimental data in Ref. 15—an
indication that our simulations provide a good approximation
of the experimental conditions. While the fluctuation patterns
are clearly sample �disorder� specific, the three distinct fluc-
tuation regimes are again clearly seen. The comparison be-
tween R2t and R14,63 �upper panel� shows that they are ap-
proximately equal over the entire transition. Moreover, it is
also apparent that the two pairs of RH and RL have different
fluctuation patterns, except on the high-� side where the two
RL are almost identical. Another observation in all our simu-
lations is that everywhere during this 1
�
2 transition, 0
�RL�0.5h /e2 and 0.5h /e2
RH
h /e2. Within experimen-
tal error bars, the experimental resistance traces also stay
within these limits.15 Thus, all observations are in agreement
with the experimental facts.

V. GENERALIZED LANDAUER-BÜTTIKER MODEL

So far, we have shown that our numerical simulations
faithfully reproduce the experimental results. In this section
we explain the physics underlying these various types of
correlations, using a simple but very general model. The con-
sequences of changing the orientation of the magnetic field,
B→−B, are also addressed.

Since all resistances are functions of the various conduc-
tance matrix elements, it is clear that the correlations of the
various resistances are encoded in the structure of the con-
ductance matrix ĝ. Thus, it is important to understand the
allowed structure of the conduction matrix, based on the
various constraints it must satisfy, and the physics known to
be relevant for transport in a LL.

As already discussed, the conductance matrix in the pres-
ence of n filled LLs is of the form nĝ�0�+ ĝ��−n�, where the
first part is the edge-state contribution of the filled LL levels,
and the second term is the contribution of the LL hosting the
Fermi energy. The challenge, then, is to understand ĝ���. Its
matrix elements satisfy the following general constraints. �i�
Since they are proportional to transmission probabilities, all
off-diagonal matrix elements are positive numbers g�,	��

�0 �see Eq. �7��. �ii� Let NT�2 be the number of terminals
�NT=6 is the case of interest to us�. The NT�NT−1� off-
diagonal matrix elements must satisfy the 2NT constraints of
Eq. �8�. Half of them fix the value of the diagonal matrix
elements, leaving a total of NT−1 supplementary constraints
for the off-diagonal elements �one constraint is trivially sat-
isfied if the other 2NT−1 hold�.

If NT=2, this implies immediately that the conductance
matrix must be symmetric, i.e. the most general possible
form is

ĝ2 = G�− 1 1

1 − 1
� . �19�

G is the total conductance between the two terminals, since
in this geometry we must have I1=−I2=−I �all the current
injected through one terminal must be removed through the
other terminal�, and therefore

�I1

I2
� = ĝ2�V1

V2
� → I = G�V1 − V2� .

For NT=3, the situation is more interesting. First, we
separate the “symmetric” contributions. Let us denote

G�	 = min�g�	,g	�� .

We can then rewrite

ĝ3 = G12�− 1 1 0

1 − 1 0

0 0 0
� + G13�− 1 0 1

0 0 0

1 0 − 1
�

+ G23�0 0 0

0 − 1 1

0 1 − 1
� + �ĝ3.

If the system is time-reversal symmetric, then �ĝ3=0 since
transport must proceed with equal probability in any two
opposite directions, p�→	= p	→�. However, in the presence
of a magnetic field, there is a preferred direction of charge
transport chosen by the magnetic field. Thus, in cases of
interest to us the conductance matrix is generally not sym-
metric �as already exemplified by ĝ�0��.

The matrix �ĝ3 which contains the nonsymmetric contri-
butions must still satisfy the constraints of Eq. �8�, since the

FIG. 9. �Color online� The result of a simulation performed at
T=11.6 mK. �a� Comparison between R2t and RH+RL. Here, R2t

has been shifted up for clarity. �b�,�c� The two pairs of RL and RH

for 1
�
2. The vertical lines indicate the boundary of three dis-
tinctive fluctuation regimes.
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symmetric contributions do. Moreover, by construction, ex-
actly three of its six off-diagonal matrix elements are zero.
The remaining �positive� matrix elements must be all equal,
and such that there is one on each row and on each column,
otherwise the constraints cannot be satisfied. The only pos-
sibilities are either

�ĝ3 = c�− 1 1 0

0 − 1 1

1 0 − 1
� or �ĝ3 = c�− 1 0 1

1 − 1 0

0 1 − 1
�

where c�0 is a constant. We call such contributions, which
involve a closed loop of at least three terminals �here, 1
→2→3 or 1→3→2� in an order selected by the magnetic
field orientation, a “chiral” contribution.

This approach can be straightforwardly generalized to
NT�3. In cases with broken time-reversal symmetry, we ex-
pect to have some symmetric and some chiral contributions.
To be more precise, we define the matrix

�l�a,b���	 = ��a�	b −
1

2
��a�	a −

1

2
��b�	b �20�

which contributes a unit to the off-diagonal element gab. For
any ordered sequence of terminals a1 ,a2 , . . . ,an, we define
the matrix

r̂�a1, . . . ,an� = l̂�a1,a2� + l̂�a2,a3� + ¯ + l̂�an,a1� . �21�

Any such r̂ matrix satisfies all the constraints of Eq. �8�. With
this notation, and assuming that the magnetic field is such as
to select the first form of �ĝ3, we can rewrite

ĝ3 = G12r̂�1,2� + G13r̂�1,3� + G23r̂�2,3� + cr̂�1,2,3� .

�22�

Any NT�NT conductance matrix ĝ can be decomposed in
a similar fashion, into a sum of symmetric �“resistances”�
and chiral contributions:

ĝ = � ca1,. . .,an
r̂�a1, . . . ,an� . �23�

where ca1,. . .,an
are positive numbers. The symmetric part is

simply �a
bGabr̂�a ,b�, where Gab=min�gab ,gba�. This
leaves at most NT�NT−1� /2 finite, positive off-diagonal ma-
trix elements, which can be grouped into a sum of “chiral”
contributions. To do this, start with the smallest nonzero ma-
trix element left, say gab−Gab, then draw a loop a→a1
→¯→an→b with bonds only connecting pairs of contacts
sharing nonzero matrix elements. We can now separate a
contribution �gab−Gab�r̂�a ,a1 , . . . ,an ,b�, ensuring that the
number of zero off-diagonal matrix elements of the remain-
ing matrix has increased by at least one, while all the finite
off-diagonal matrix elements are still positive. The procedure
is repeated until the decomposition is completed.

A. Six-terminal geometry for the IQHE

While the decomposition of Eq. �23� is very general,
which of the decomposition terms are important depends, of
course, on the physical system considered. We now return to

the problem of interest to us, namely the 6�6 matrix ĝ���
describing the contribution to the total conductance of the LL
hosting the Fermi energy. From now, 0
�
1 stands for the
filling factor of the LL hosting the Fermi energy. The total
filling factor is n+�, where n is the number of filled LLs.

At low �, all states of the LL hosting EF are localized and
transport can only occur through tunneling. Tunneling occurs
with equal probability in both directions. Thus, on very gen-
eral grounds, here we expect the conductance matrix to be
symmetric, with small off-diagonal elements since tunneling
probabilities are small.

Let us consider this case in more detail. In Fig. 10�a�, we
sketch some possible routes for charge transport between
three terminals, at low �. The wave functions are drawn in a
semiclassical manner, following equipotentials of the disor-
der potential in the direction determined by the sign of B.
This does not mean that our arguments only hold in the semi-
classical regime. They are general and hold in the quantum
regime—we just do not know how to draw quantum me-
chanical wave functions.

Most of the electrons injected through any of the termi-
nals will be scattered back. However, with a small probabil-
ity p12, electrons injected from terminal 2 can tunnel to near
terminal 1. Another possible route of scattering from 2 into
1, is for electrons to first tunnel to a state near 6 �probability
p26� and from there to near 1 �probability p16�. The total
probability for this process is �1− p12�p26p61�1− p12�. The
electron can, however, make any number of closed loops
between finally entering in 1, and so the total probability to
arrive from 2 to 1 is

p2→1 = p12 +
�1 − p12�p26p61�1 − p12�

1 − p12p26p61
.

Similarly, an electron injected through 1 can scatter into 2
either directly �with probability �1− p16�p12�1− p26�� or can
make any number of loops, yielding

p1→2 =
�1 − p16�p12�1 − p26�

1 − p12p26p61
.

The other probabilities p1→6, p6→1, p2→6 and p6→2 can be
calculated similarly.

FIG. 10. A semiclassical illustration of possible transport be-
tween terminals, for �a� low filling factors �→0. In this case, all
states in the LL hosting the Fermi level are localized, and transport
can only occur by tunneling. �b� At high filling factors �→1, the
edge states are established and dominate the transport. Jain-
Kivelson tunneling through localized states inside the sample can
create short chiral currents.
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Using Gab= �e2 /h�min�pa→b , pb→a��0, we find G�	

= �e2 /h�p�	+O�p3�, i.e., indeed, the largest contribution to
transport between these three terminals comes from direct
tunneling and is symmetric. However, the conductance ma-
trix is not fully symmetric, since p2→1− p1→2�0. In fact, one
finds that p2→1− p1→2= p6→2− p2→6= p1→6− p6→1=c= p12p26
+ p12p16+ p26p61+O�p3�, showing also the appearance of a
very small chiral contribution. Thus, the contribution of these
processes to the conductance matrix is precisely of the ex-
pected form of Eq. �22�.

This derivation completely ignores interference effects
between different scattering paths, and therefore is valid only
in the presence of significant dephasing. Our numerical
simulations, on the other hand, assume full coherence be-
tween all electron wave functions �there is no inelastic scat-
tering in our Hamiltonian�. In such a case, one should sum
the amplitudes of probabilities for various processes, and
then square its modulus to find the total probability. The
derivation for this case is very similar to the above one �also
see Ref. 17�. The main contribution to the off-diagonal con-
ductance matrix elements are still due to the direct tunneling,
e.g., G12= �e2 /h��t12�2, where t12 is the amplitude of probabil-
ity to tunnel from 1 to 2 �so that �t12�2= p12�. The difference is
that the chiral current is now of order �t�3, not p2= �t�4 as
when the interference is ignored. The reality is in between,
since in the real samples there is some amount of decoher-
ence. Irrespective of how much decoherence there is, a pre-
dominantly symmetric conductance matrix is inevitable if
tunneling is the only means of charge transport.

Of course, in order to derive an expression for the entire
6�6 conductance matrix, we have to also consider tunneling
to the other three terminals in all possible combinations. It
should be apparent that as long as all p�1, the only effect of
that is to add symmetric terms of order p between all pairs of
terminals connected by direct tunneling, and much smaller
chiral terms, of order p2 or �t�3, for various closed loops. This
explains why for low �, ĝ is symmetric with small off-
diagonal components, as indeed confirmed by the numerical
simulations �see Fig. 5�.

At high �, on the other hand, the transport mechanism is
very different. As expected on general grounds �and con-
firmed by the numerics� edge states are established within
the LL once ��0.5. With very high probability, electrons
are transported through the edge states to the next terminal
�+1→�. In the limit �→1 we expect and find ĝ
→ �e2 /h�r̂�1,2 ,3 ,4 ,5 ,6�= ĝ�0�.

For intermediate �, however, shorter chiral loops contain-
ing edge states can be established through tunneling, as
sketched in Fig. 10�b�. Assume that an electron leaving con-
tact 3 can tunnel with amplitudes of probability t3 and t5 to
and out of a localized state inside the sample, to join the
opposite edge state and enter 5. This is precisely the Jain-
Kivelson phenomenology.22 Summing over all possible pro-
cesses and ignoring decoherence, we find their result22

p3→5 =
h

e2g53 = � t3t5

1 − r3r5 exp�i�/�0�
�2

�24�

where � is the flux enclosed by the localized state, �0=h /e
is the unit of flux, and �r3�=�1− �t3�2 , �r5�=�1− �t5�2 are the

amplitudes to avoid the corresponding tunneling. On the
other hand, p5→3=0, since in this scenario, no electron leav-
ing 5 enters 3. Thus, in this case there is no symmetric term
proportional to r̂�3,5�, only a chiral loop term g53r̂�3,4 ,5�.
Physically, this term represents the backscattered current of
the Jain-Kivelson model.22 Other shorter chiral loops can be
established by tunneling between other pairs of edge states,
so in the high-� limit we expect the conductance matrix to be
a sum of such chiral loops. Again, inclusion of partial or total
dephasing does not change this conclusion.

This analysis has reconfirmed our assertion that the con-
ductance matrix can be decomposed into a sum of symmetric
terms and chiral terms. For this particular system, we have
now shown that at low �, the symmetric terms are the domi-
nant �although small� contribution, while at high �, chiral
loops are the dominant contribution. Near half filling, we
expect both types of terms to be important. Consider then the
general form

ĝ = nĝ�0� + G12r̂�1,2� + G16r̂�1,6� + G26r̂�2,6� + G34r̂�3,4�

+ G35r̂�3,5� + G45r̂�4,5� +
e2

h
�c0ĝ�0� + c1r̂�1,2,6�

+ c2r̂�2,3,5,6� + c3r̂�3,4,5� + c4r̂�1,2,3,5,6�

+ c5r̂�2,3,4,5,6�� . �25�

The first term is the contribution of the n completely filled
lower LLs, while all other terms describe transport in the LL
hosting EF. Equation �25� is not the most general possible
decomposition—that would have 15 symmetric and 10 chiral
terms. In Eq. �25� we assume no tunneling �no symmetric
terms� between the left and right sides of the sample. The
largest such neglected terms are G23r̂�2,3� and G56r̂�5,6�.
Numerically, we find G23, G56
10−4e2 /h �see Fig. 5, where
G23=min�g23,g32�, etc.�. We analyze the influence of these
neglected terms on the resistance fluctuations in the next
section. The four chiral loops neglected all have one “diag-
onal” link between 2 and 5, or between 3 and 6. As ex-
plained, chiral loops are important at larger filling factors,
because of Jain-Kivelson scattering between opposite edge
states. Such scattering does not mediate direct transport be-
tween 2↔5 or 3↔6 �see discussion below�, so these terms
can be safely neglected.

The model of Eq. �25� is thus a parametrization of the 6
�6 matrix ĝ with 12 independent parameters. At low �, the
chiral terms ci→0 and the decomposition is dominated by
the symmetric terms. At high �, the symmetric terms vanish
G�	→0 while the chiral terms are important, in particular
c0→1. Near half-filling, all terms are likely to contribute.
Equation �25� thus covers all possible filling factors 0
�

1. Figure 11 sketches the elements contained in this model.
The closed directed loops indicate chiral terms while the re-
sistors indicate the existence of symmetric terms. Resistors
suggest dissipation; as we show shortly, they play a role only
during transitions between QHE plateaus. Close to integer
filling, where the Hall conductances are quantized and the
sample is disipationless, ĝ→nĝ�0� and all symmetric �“resis-
tors”� terms vanish, as do the shorter chiral loops.
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B. The correlations of the resistance fluctuations

With Eq. �25�, the equations Î14= ĝ · V̂ and Î63= ĝ · V̂� can
be solved analytically and the various Hall, longitudinal, and
two-terminal resistances can be calculated in terms of these
12 parameters. The complete solutions are very long and we
do not list them here.

The following identity is found to hold:

R14,63 = R63,63 =
h

e2

1

n + c0 + c2 + c4 + c5
. �26�

Since R63,63=R2t, whereas R14,63=R14,62
H +R14,23

L =R14,65
L

+R14,53
H ; this means that R2t=RH+RL irrespective of the val-

ues of the 12 parameters. In other words, this identity is
obeyed for all �, which explains why it is observed in both
experiment and simulation. �This identity is not observed in
experiment for low magnetic fields. This can be ascribed to
deviations from the IQHE regime, where some of the ap-
proximations we make here—ignoring the LL mixing, for
example—fail.�

In Eq. �26�, n+c0+c2+c4+c5 is the total chiral current
flowing along the 6→5 and 3→2 edges. As discussed, at
low � the chiral currents in the LL hosting EF are vanishingly
small: ci=0, i=1, . . . ,6. �There are no edge states established
yet, and tunneling contributions to chiral currents are of or-
der t3 or less, as shown in the previous section. Below �c, all
t
10−2; see Fig. 5.� It follows that at low �, RL+RH

=h / �ne2�, explaining the perfect correlations in the fluctua-
tion patterns of the two resistances, seen experimentally and
numerically.

In the high-� regime the transport is dominated by the
chiral currents created by tunneling between opposite edge
states, through localized states inside the sample.22 The most
general possible situation is sketched in Fig. 12. p1, p2, and
p3 are the total probabilities for tunneling between the pairs
of edges, summing over all the possible tunneling processes
through all available localized states in the sample. Each
such contribution fluctuates strongly as B �or �� is changed,
since the magnetic flux enclosed by various localized states
changes significantly �see Eq. �24� for the simplest possible
expression for such a probability�. The various conductance
matrix elements can be simply read off this figure; for ex-
ample, �h /e2�g12= p2→1=1− p1. After adding the contribution

of the n filled LLs, the total conductance matrix can be writ-
ten as a sum of chiral terms, consistent with Eq. �25�:

ĝ = �1 − p1 − p2 − p3�ĝ�0� +
e2

h
p2�r̂�1,2,6� + r̂�3,4,5��

+
e2

h
�p3r̂�1,2,3,5,6� + p1r̂�2,3,4,5,6�� + nĝ�0�. �27�

In this case, the equation Î14= ĝV̂ is trivial to solve. We find

R14,62
H = R14,53

H =
h

�n + 1�e2 ,

i.e., the Hall resistances are precisely quantized, whereas

R14,23
L = R14,65

L =
h

�n + 1�e2

p2

n + 1 − p2
.

Note that the result only depends on p2, i.e., on tunneling
between edge states in the central part of the device, between
the four voltage terminals. This is further justification that a
short sample is sufficient for the numerical simulation. Since
p2 has a strong resonant dependence on EF �or ��, it follows
that the two RL fluctuate strongly, but with identical patterns.
This is precisely what is observed in experiment and numer-
ics, on the high-� side of the transition �see Figs. 7 and 9�
and supports our assertion that the fluctuations in this regime
are caused by Jain-Kivelson tunneling. In particular, if n=0
�transition inside the spin-up LLL�, RL can be arbitrarily
large when p2→1 �see Fig. 7�. In higher LLs, the amplitude
of fluctuations of RL is h / �n�n+1��e2 or less, as observed
both experimentally and in our simulations �see Fig. 9�.

These results are very interesting because they show that
one does not actually need to know the conductance matrix
in order to understand what correlations might exist between
various resistances. All that is needed is to have some idea of
its general structure, which can be inferred based on physical
arguments. At low � the conductance matrix is the sum be-
tween nĝ�0� and a symmetric matrix describing tunneling be-
tween various terminals �ignoring tunneling between the left

and right sides, for the time being�. The solutions of Î14

= ĝV̂ for such a matrix always satisfy RL+RH=h / �ne2�, no
matter what are the off-diagonal values of the symmetric
component. It follows that this identity must be obeyed in
experiments as long as the conductance matrix has this form,
i.e., for filling factors low-enough that tunneling is the domi-

FIG. 11. �Color online� Terms contained in the general decom-
position of Eq. �25�. Symmetric terms are represented as resistors,
while chiral terms are represented as closed directed loops.

FIG. 12. �Color online� Possible Jain-Kivelson processes in the
sample for high-� region.
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nant transport mechanism in the LL hosting EF. On the other
hand, for high filling factors, physical arguments based on
the appearance of the edge states and the Jain-Kivelson phe-
nomenology lead to the conclusion that the general form of
the conductance matrix is as in Eq. �27�. In this case, we find
that irrespective of the values of the parameters p1, p2, and
p3, the RH are quantized while the two RL fluctuate with
identical patterns. Finally, to cover all possible �, we must
include in ĝ both types of allowed symmetric and chiral
terms. In this case, we find that the identity R2t=RH+RL

holds, irrespective of the values of the various parameters.
Such arguments can be straightforwardly generalized to ge-
ometries with any number of terminals, allowing one to eas-
ily test in what cases are correlations expected on such gen-
eral grounds. The behavior when the sign of B is changed
can also be understood easily, as we show now.

C. Changing the orientation of the magnetic field

If B changes sign, the Onsager reciprocal relation18 reads

ĝ�− B� = �ĝ�B��T.

That this must be so is obvious for our generic conductance
matrix of Eq. �25�: the time-reversal symmetric tunneling is
not affected by this sign change, but the flow of the chiral
currents is reversed �equivalent with taking the transpose�.
The solutions of Î14= ĝ�−B� · v̂ are then related to the solu-

tions of Î14= ĝ�B� · V̂ by v2=V6, v3=V5, v5=V3 and v6=V2,
provided that the same index exchanges 2↔6, 3↔5, are
performed for all Gab. Terms not invariant under this trans-
formation are G12, G16, G43, and G45. In the experimental
setup, these four terms must be very small, due to the long
distance between source and drain, and their nearby contacts.
�In the simulation, these terms are sometimes not negligible
because the simulated sample is rather short.� If we set these
four terms to zero and keep only the largest symmetric terms
G26 and G35 in Eq. �25�, we find that R14,23

L �B�=R14,65
L �−B�

and vice versa. In other words; the fluctuation pattern of one
RL mirrors that of the other RL when B→−B, as observed
experimentally.16 Small violations of this symmetry observed
experimentally at low �, are likely due to the perturbative
corrections from the very small, noninvariant tunneling con-
tributions proportional to G12−G16 and G43−G45. This is
confirmed in the next section.

D. Small corrections to correlations and symmetry

The most significant terms neglected in the general de-
composition of Eq. �25� are G23r̂�2,3� and G56r̂�5,6�, which
are due to tunneling between the neighboring voltage probes.
All other tunneling terms neglected are smaller than these,
because they are between contacts further apart. Remember
that even these two terms are very small; numerically we
found that they are of order 10−4e2 /h or less �see Fig. 5�. We
now investigate whether the inclusion of these terms violates
significantly the various correlations established in their ab-
sence. For simplicity, in the rest of this section we set e2 /h
=1, in other words we measure all conductances in e2 /h
units.

We first investigate the effects of adding the G23 and G56
terms on the low-� correlations RH+RL=1/n. We set all ci
=0, since at low-� the chiral terms are negligible compared
to the symmetric terms. To first order perturbation in G23 and
G56, we find

R14,63 −
1

n
=

�n�G26 + G12� + F1�G23

n2�nF2 + F1�

+
�n�G35 + G45� + F3�G56

n2�nF4 + F3�
+ ¯ , �28�

where

F1 = G16G26 + G12G16 + G12G26, F2 = G16 + G26 + G12,

F3 = G34G45 + G34G35 + G35G45, F4 = G34 + G35 + G45.

In the given experimental geometry, we expect that
G12,G16�G26 and G34,G45�G35, since terminals 1 and 4
are very far from 2 and 3 �5 and 6�, and thus the tunneling
probabilities must be much smaller. Within this limit, the
previous expression can be further simplified to

R14,63 −
1

n
�

G23 + G56

n3 .

In other words, the identity RH+RL=R14,63=1/n should in-
deed be obeyed with high accuracy, as long as the direct
tunneling between 2 and 3 �5 and 6�, as well as the chiral
contributions, are indeed small.

We now consider the effect of adding the G23 and G56
terms on the identity RL+RH=R2t. After expanding to first
order in these two quantities, we find

R14,63 − R63,63 = −
G45G56

A1
−

G12G23

A2
+ ¯ , �29�

where we define CT=�i=0
5 ci and

A1 = �n + CT − c1 + G35��n + CT − c1 − c3��n + c0 + c3 + c5� ,

A2 = �n + CT − c3 + G26��n + CT − c1 − c3��n + c0 + c1 + c4� .

Since G45, G56, G12, and G23 are all small numbers, we have
A1 ,A2�n3�1, and therefore this correction is also small for
all values of �.

Finally, we investigate how the B-reversal symmetry is
perturbed by a small imbalance between G34 and G45 �G12
and G16�. As stated before, RH�−B� and RL�−B� are calcu-
lated with ĝT. For simplicity, here we take G23=G56=0, and
find

R14,65
L �B� − R14,23

L �− B� =
G34 − G45

B1
, �30a�

R14,23
L �B� − R14,65

L �− B� =
G12 − G16

B2
, �30b�

where

B1 = G34G45 + �n + c0 + c3 + c5 + G34 + G45�

��n + CT − c1 + G35� ,
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B2 = G12G16 + �n + c0 + c1 + c4 + G16 + G12�

��n + CT − c3 + G26� .

The largest contributions to B1 and B2 come from n, G35,
and G26 and explain why these corrections to perfect sym-
metry of R14;65

L �B� and R14;23
L �−B� are small. In fact, we can

see that the larger the various chiral terms, the smaller these
corrections should be. This agrees with the experimental
data, where the largest violations of this symmetry are ob-
served between the neighboring large fluctuation peaks in
R14;63, on the low-� side of the central regime. From Eq.
�26�, we know that those sharp peaks are caused by fluctu-
ating chiral components of the conductance matrix, such as
c2, c4, and c5. From Eqs. �30�, we see that when these pa-
rameters are large �peak value in R14;63�, the difference be-
tween R14;65

L �B� and R14;23
L �−B� is suppressed. When R14;63 is

closer to 1/n, however, the chiral terms are smaller and the
corrections to the difference becomes more noticeable.

In all these correction terms, powers of n appear in the
denominator. Since n is the number of underlying filled LLs,
these corrections should be smaller in higher LLs and there-
fore the symmetries and correlations should be easier to ob-
serve. They have been experimentally observed in higher
LLs,16 but they are not so clear as in the first plateau-to-
plateau transition. There are two reasons for this. First, the
sample quality is rather poor and only the first transition is
clearly observed.15,16 Second, a smaller magnetic field is
needed to reach higher LLs. As the cyclotron energy is re-
duced, inter-Landau-level mixing and other effects which we
did not consider in these simulations may start to become
important.

VI. SUMMARY AND DISCUSSION

To summarize, in this study we show that first-principles
simulations of the IQHE in mesoscopic samples, based on
the multiterminal Landauer formalism appropriate for nonin-
teracting electrons, recapture all the nontrivial correlations
and symmetries recently observed experimentally. Moreover,
we explain how these correlations and symmetries are direct
consequences of the general allowed structure of the conduc-
tance matrix.

Similar to the experiments, we find that the IQHE transi-
tion in higher LLs is naturally divided into three regimes. On
the low-� side of the transition, the LL hosting EF is insulat-
ing. If tunneling between left and right sides is also small,
the fluctuations of pairs of resistances are correlated with
excellent accuracy, i.e., RH+RL=h /ne2. This condition is
obeyed if the typical size of the wave function �localization
length� is less than the distance between contacts 2 and 3.
When the localization length becomes comparable to this
distance, edge states begin to be established and the correla-
tion between RL and RH is lost. On the high-� side of the
transition, the edge states are established and responsible for
most of the charge transport. However, localized states inside
the sample can help electrons tunnel between opposite edges,
leading to backscattering as in the Jain-Kivelson model. In
this case, our simulations show that the two RL fluctuate with
identical patterns, while the RH are quantized. Tunneling be-

tween opposite edges is likely only if the typical size of the
wave-functions is slightly shorter than the distance between
opposite edges. It is then apparent that the central regime in
Figs. 8 and 9 corresponds to the so-called “critical region,”
where the typical size of the electron wave function is larger
than the sample size �distance between contacts 2 and 3 at
low �, or between 2 and 6 at high ��. In these mesoscopic
samples, the voltage probes act as markers on a ruler, mea-
suring the size of the wave functions at the Fermi energy. To
our knowledge, this is the first time when the boundaries of
the critical region have been pinpointed experimentally. This
opens up exciting possibilities for experimentally testing the
predictions of the localization theory of IQHE. For instance,
Jovanovic et al.23 predict that the finite size scaling exponent
of the conductance correlation function in the critical regime
is given by the dynamical scaling exponent rather than the
localization exponent.

Conductance fluctuations at the IQHE transitions have
been studied before by several authors. Wang et al.,24 Cho
and Fisher,25 and Jovanovic et al.23 have focused on the two-
terminal conductance, with numerical simulations based on
Chalker and Coddington’s network model.26 Ando has nu-
merically computed conductances for two- and four-terminal
samples,27 using the Landauer-Büttiker formalism, but in the
Green’s function formulation that requires the discretization
of the sample to a lattice model.28,29 Their results are consis-
tent with ours, showing fluctuations in the resistances which
are random, sample-dependent, and of order of h /e2. Středa,
Kucera, and MacDonald30 were the first to predict the rela-
tions RH+RL=h / �ne2� and R2t=RH+RL, using an analytical
analysis of the Landauer formula for a “two-terminal”
sample, but which has the upper and lower sides of each
terminal held at different voltages. In effect, their current
source and drain �leads 1 and 4� are moved to infinity, and
connected to the central sample through edge states only.
This is a special case of our general model of Eq. �25�.
Büttiker31 presented a detailed analysis of four-terminal sys-
tems, similar to our analysis of the six-terminal conductance
matrix. He predicted the symmetry relations between con-
ductance measurements which exchange the role of the volt-
age and current leads.

However, it is essential to emphasize that neither two- nor
four-terminal samples �with terminals at well-defined volt-
ages� can simultaneously measure both a Hall and a longitu-
dinal resistance. This is obvious for a two-terminal measure-
ment, which can measure a single two-terminal conductance
R12,12. For a four-terminal geometry �see Fig. 13�, consider
the case of n filled Landau levels, �=n. We know that each
LL will transport charge through a set of edge states, such as
those sketched in Fig. 13. The conductance matrix in this
case is

ĝ4 = n
e2

h �
− 1 1 0 0

0 − 1 1 0

0 0 − 1 1

1 0 0 − 1
� .

Taking leads 1 and 3 as the current source and drain,

Î= �−I ,0 , I ,0�, and assuming that lead 3 is grounded, one can
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solve Î= ĝ4V̂ for the other three voltages. One finds trivially
that V1=V4= Ih / �ne2� and V2=V3=0. Thus, even though at
first sight one might assume that one can measure a Hall
resistance RH= �V4−V2� / I and a longitudinal resistance RL

= �V1−V3� / I, it turns out that in fact both measurements give
resistances exhibiting plateaus at quantized values h / �ne2�.
In other words, both results are related to a Hall resistance �a
longitudinal resistance should be zero when �=n. Note that
at transitions between the plateaus, the two resistances need
not be equal, since the partially filled LL will introduce other
off-diagonal matrix elements. Using the type of analysis we
introduced in Sec. V, one could now easily study what types
of correlations might be possible in such a geometry�. If one
now compares this to a six-terminal case, it becomes obvious
that the four-terminal resistances have no reason to be related
to the RH measured in the six-terminals by experimentalists.
Thus, in order to simulate and understand the experimental
results, it is essential to use the six-terminal geometry.

These considerations show that for mesoscopic samples, a
full specification of the experimental setup is absolutely nec-
essary for any interpretation of the measured quantities. For
example, the various correlations and symmetries that we
studied in this paper only appear in the six-lead setup. Other
geometries can be analyzed similarly. A significant result of
our work is the proof that an understanding of various pos-
sible �robust� correlations can be obtained based on simple
arguments regarding the general allowed structure of the
conductance matrix, without need for detailed numerical
simulations.

Furthermore, we have shown that the full dc response
function �the conductance matrix� of a mesoscopic sample is
characterized by a large number of parameters �12, for our
six-terminal geometry, when we ignore the small tunneling
between the left and right sides of the Hall bar�. This is to be
contrasted with macroscopic samples which only require two
parameters, the Hall and longitudinal conductivities �xy and
�xx, to fully characterize their dc response. A mesoscopic
sample obviously has more degrees of freedom to display
fluctuations of its resistances.
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APPENDIX: CHOOSING THE RIGHT CONFINING
POTENTIAL

The confining potential is needed to define the Hall bar
out of the larger area spanned by each LL Hilbert subspace.
It is convenient to make a symmetric choice. We take the
confining potential to be negative in the region
�−Lx /2 ,Lx /2�� �−Ly /2 ,0� �which is thus the Hall bar� and
positive in the remaining region �−Lx /2 ,Lx /2�� �0,Ly /2�
�the inverted Hall bar� and such that Vc�x ,y�=−Vc�x ,y
+Ly /2�. On the y-edges of the Hall bar we then have Vc�x ,
−Ly /2�=Vc�x ,0�=0. Inside most of the Hall bar, the confin-
ing potential is equal to −Vgap, where Vgap�0 is large enough
to confine the electrons to the Hall bar when disorder is
added, for all EF
0.

The question is how should Vc�x ,y� behave near the Hall
bar edges, at x= ±Lx /2 or y=−Ly /2 ,0. For instance, Vc could
vary smoothly or abruptly from −Vgap to 0, as the y edges are
approached. On the x edges, we could take Vc=0 or −Vgap.
Two of the possible choices are shown in Fig. 14. The shape
of Vc near the edges is critical for the quality of the simula-
tion, as we show here.

Since little is known about the real shape of the confining
potential, we test the various choices by analyzing the IQHE
transition from RH=h /e2 to RH=h / �2e2�, in the absence of
disorder. The computation is done as described in the text,
but with Vd=0. We add a ĝ�0� to the calculated ĝ���, to ac-

FIG. 13. �Color online� Edge states in a four-terminal measure-
ment. Leads 1 and 3 are the current source and drain, while leads 2
and 4 are the voltage leads.

FIG. 14. Two of the tested confining potentials. Left: This po-
tential has discontinuous changes at y=0 and y= ±Ly /2, and is
smoothly connected to zero on the x edges. Right: An improved
potential with open ends and smooth y edges.
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count for the contribution of an underlying, filled LL. These
simulations were carried on smaller samples, to save CPU
time. The results should show �1� a sharp transition of RH

from h /e2 to h / �2e2�; �2� the built-in particle-hole symmetry
of the Hamiltonian, i.e., symmetry of the results about EF
=0 �this is a consequence of choosing a symmetric confining
potential and symmetric contact states for the terminals�; �3�
the two Hall resistances are always equal, and so are the two
longitudinal resistances �in the absence of disorder, the po-
tential has rectangular symmetry.�

Figure 14 shows two confining potentials which were
used for testing purposes. Typical results of tests using the
potential in the right panel of Fig. 14 are shown in Figs. 15
and 16. We found several features of the confining potential
that result in unrealistic, unphysical results. First, abrupt
changes of the confining potential near the y edges, such as
shown in the left panel of Fig. 14, result in strong, fast os-

cillations in the resistances �similar to those displayed in Fig.
15�b�, but with an amplitude of order h /e2�. Second, raising
the confining potential to near zero at the x edges, as shown
in the same case, also leads to undesired consequences, for
example half quantization RH=RL=h / �2e2� over a consider-
able energy range. This is because leads 1 and 4 are only
connected to the leftmost and rightmost LL states. In this
case, the energies of these states are close to zero, so they
appear to be huge barriers blocking the electrons on the lead
to enter the sample. Electrons can only tunnel through these
barriers with very small probabilities, and no chiral currents
can exit at the x edges unless EF�0. In other words, this is
equivalent to having very bad contacts, a situation which is
avoided in the experiments.

The right panel of Fig. 14 shows an improved confining
potential. The confining potential varies smoothy near the y
edges, and the x edges are no longer fixed at constant value.
The y edges are smooth because in a real sample, we do
expect a smooth rise of the confining potential on the edges
of the Hall bar. Its gradient is determined by how the 2DES
is defined on the sample, as well as various screening effects.

Figure 15 plots the Hall resistances calculated with Vc
shown in Fig. 14 �right�. Panel �a� shows an overview of the
data. Here Vgap=10 meV, so that EF was varied over a range
spanning the entire confining potential. Particle-hole symme-
try is obvious. Panel �b� zooms in on the central region close
to EF=0 in panel �a� and reveals the minute scale of oscilla-
tions in RH. In this regime, the edge states have been fully
established, and the total conductance matrix is almost ex-
actly 2ĝ�0�. The small oscillations also exhibit the built-in
particle-hole symmetry. Panel �c� zooms in on the transition
region. One can see that the transition from first to the sec-
ond plateau occurs within a small energy interval. This is
because in the absence of disorder, the edge states are estab-
lished immediately once EF�−Vgap. In all panels, we see
that the two Hall resistances are indeed identical.

Figure 16 shows the longitudinal resistances for the same
simulation. All the expected symmetries are again observed.
Except for the very narrow interval of energies where the
transition takes place, the longitudinal resistances are vanish-
ingly small. This is expected, since for all energies except
near ±Vgap all transport is due to edge modes, which do not
contribute to RL. The small deviations from zero near EF
=0 are magnified in panel �b�. In panel �c�, we show the
peaks associated with the transition. The symmetries ob-
served in the results confirm the numerical accuracy of the
simulations. We are now confident that in the absence of
disorder, the simulation shows a clear integer quantum Hall
transition. Thus, we have confidence in attributing extra fea-
tures in the full simulations to the effects of the disorder.

As we just showed, the confining potential of Fig. 14
�right� gives physically reasonable results. However, we

FIG. 17. A sketch of the sample used by Peled et al. �Refs.
14–16�, drawn to scale. The region spanned by our LL Hilbert
subspace is comparable to the size of the shaded area.

FIG. 15. �Color online� Hall resistances calculated for the con-
fining potential shown in Fig. 14 �right�, R14,62

H �gray� and R14,53
H

�black�. �a� The overview of the entire energy interval scanned by
Fermi energy EF. Here, R14,53

H has been shifted up by one unit. �b�
Amplified view of the very small oscillations close to EF=0, �RH

=RH−h /2e2. �c� Amplified view of the transition from RH=h /e2 to
RH=h /2e2.

FIG. 16. �Color online� Longitudinal resistances calculated for
the confining potential shown in Fig. 14 �right�, R14,62

H �gray� and
R14,53

H �black�. �a� The overview of the entire energy interval
scanned by Fermi energy EF. Here, R14,53

H has been shifted up by
one unit. �b� Amplified view of the very small variations close to
EF=0. �c� Amplified view of the IQHE transition.
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make one more modification, to account for the short size of
the samples we use in numerical simulations. Figure 17
shows the geometry of the real sample used in the
experiments.14–16 The length of the real sample is approxi-
mately 20 �m. Given our computational resources, we simu-
late the relatively short shaded area, so that after adding the
confining potential, our Hall bar has the same thickeness and
distance between the 4 central voltage terminals, but is only
4 �m long. Thus, our current source and drain �leads 1 and
4� are much closer to the voltage probes than in experiments.

Because of this short distance, we frequently observe di-
rect tunneling between leads 1 or 4 and their nearest neigh-

bor terminals �2, 6 or, respectively, 3, 5�. In the simulation,
this kind of tunneling leads to large symmetric matrix ele-
ments in the conductance matrix, e.g. g12�g21�e2 /h, and
abnormal behavior of RL and RH. Experimentalists take great
care to avoid direct tunneling between leads, which consti-
tutes a shortcircuit. To avoid such direct tunneling in the
simulation, we add triangular potential barriers in the corners
of the Hall bar. With these, the edges are effectively pro-
longed, corresponding to an increased separation between
the voltage probes and current source and drain. Figure 2
shows the final form of the confining potential used in our
simulations with six terminals.

*Present address: Computer Science and Mathematics Division,
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Ridge, Tennessee 37831, USA; Center for Simulational Physics,
University of Georgia, Athens, Georgia 30602, USA.
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