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Abstract. – We perform first-principles simulations to study the resistance fluctuations of
mesoscopic samples, near transitions between quantum Hall plateaus. We use six-terminal
geometry and sample sizes similar to those of real devices and calculate the Hall and longi-
tudinal resistances using the Landauer formula. Our simulations recapture all the observed
experimental features. We then use a generalization of the Landauer-Büttiker model, based on
the interplay between tunneling and chiral currents, to explain the three regimes with distinct
fluctuations observed, and identify the central regime as the critical region.

Although the Integer Quantum Hall Effect (IQHE) is generally well understood, recent
experiments on mesoscopic samples [1–3] uncovered unexpected behavior in the seemingly
noisy fluctuations of the Hall (RH) and longitudinal (RL) resistances. Previously, resistance
fluctuations were observed in mesoscopic samples with a phase coherence length larger than the
sample size [4–7]; they are totally random, similar to universal conductance fluctuations [8].
In contrast, Peled et al. find [1, 2] that the transition between the n-th and (n+ 1)-th IQHE
plateaus has three distinct regimes: i) on the high-B side, both RH and RL have large but
correlated fluctuations, such that RL +RH = h/ne2; ii) for intermediate B values, RH and RL

exhibit uncorrelated fluctuations; and iii) on the low-B side, RH = h/(n + 1)e2 is quantized
while RL fluctuates. For n = 0, regions i) and ii) are replaced by the transition to the
insulating phase [1]. Moreover, RL + RH = R2t holds at all B values [2] (the two-terminal
resistance R2t is defined below). Changing the sign of the magnetic field B → −B also has
interesting consequences [3], which we discuss later. In this letter, we explain the physics
behind these observations in a unified theory.

The relation RL +RH = R2t was first proposed by Streda et al. [9], while the fluctuations
of regime iii) are reminiscent of Jain and Kivelson’s theory on the resistance fluctuations of
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Fig. 1 – (Color online) (a) Typical potential Vd+Vb of a 4µm×2µm sample. (b) Chiral (arrows) and
tunneling (resistors) currents in our model. This direction of chiral currents corresponds to B entering
the page. (c) Some semi-classical current distributions parameterized by our model. (d) Jain-Kivelson
tunneling for high ν. See text for further details.

narrow samples [10]. These results were questioned by Büttiker [11], based on formulas derived
for a four-terminal geometry [12, 13]. We take an approach similar to Büttiker’s and use the
multi-probe Landauer formula [12–14] to calculate the resistances. However, we mirror the
experiments by including all six terminals in our model, i.e. the four voltage probes plus the
source and the drain for the electrical current. The six-terminal geometry is necessary to
compute both RH and RL and is one of the main differences between this work and other
theoretical investigations of “conductance fluctuations” in two- or four-terminal geometries
(e.g., see [15]). Our model enables us to reveal the very rich physics of the mesoscopic IQHE.

The response function of the six-terminal mesoscopic Hall bar is a 6×6 conductance matrix
ĝ, with which the current-voltage relation reads Iα =

∑
β gαβVβ . Here, Iα is the out-going

current on lead α = 1, · · · , 6 and Vα is the leads’s voltage. ĝ is calculated [14] by solving a
multi-channel scattering problem: gα,β �=α = (e2/h)

∑
i,j |tαi,βj |2 = (e2/h)pβ→α, where tαi,βj is

the transmission amplitude from the j-th transverse channel of lead β into the i-th transverse
channel of lead α for an electron at the Fermi energy EF ; pβ→α is then the total probability
to scatter from contact β into α. Charge conservation and gauge invariance require that∑

α gαβ =
∑

β gαβ = 0. Diagonal elements then must be given by gαα = −∑
β �=α gαβ =

−∑
β �=α gβα. This imposes a constraint on the off-diagonal elements of ĝ for each value of α.

Our model is sketched in fig. 1(a). Six perfectly conducting, semi-infinite leads are linked
to a 4µm× 2µm sample with a disorder potential Vd and a confining potential Vb. Vd(r) is a
sum of random short-range Gaussians (10–30 nm) generating elastic scattering in the sample,
while Vb(r) confines the electrons to the sample. We restrict the sample’s Hilbert space to
the LxLyB/φ0 ∼ 104 states of the lowest Landau level (LLL), where LxLy is the area of
the sample, B ∼ 10 T and φ0 = h/e is the magnetic flux quantum. In the guiding-center
representation of the LLL, the sample Hamiltonian is a large, sparse matrix [16]. The leads
are modeled as ensembles of semi-infinite one-dimensional tight-binding chains attached to
LLL states localized on the corresponding edges of the sample [16]. The method of solving
the scattering problem described in ref. [16] allows for very general coupling of the leads to the
sample, but it is otherwise equivalent to the usual Green’s function technique [17]. Further
modeling details will be reported elsewhere [18]. For a given magnetic field B, we numerically
solve the full scattering problem for different values of the Fermi energy and calculate ĝ(EF ).
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Fig. 2 – (Color online) Representative conductance matrix elements, in units of e2/h, as a function of
the filling factor ν. The left (right) panel shows g23, g45 and g62, respectively g32, g54 and g26, char-
acterizing transport in the (against the) direction of the edge currents. Results are almost identical
on the left of the dot-dashed line, but different on its right.

The filling factor ν is also a function of EF , and therefore we can find ĝ(ν).
The resistances are then computed from ĝ. In the usual experimental setup the current

is injected in the source and extracted in the drain −I1 = I4 = I: Î14 = (−I, 0, 0, I, 0, 0)T .
Without loss of generality we set I = 1 and V4 = 0. The other five contact voltages are uniquely
determined from Î14 = ĝ · V̂ . We define two longitudinal resistances RL

14,23 = (V2 − V3)/I =
V2 − V3, RL

14,65 = V6 − V5, and two Hall resistances RH
14,62 = V6 − V2, RH

14,53 = V5 − V3.
In fig. 2, we plot representative matrix elements gαβ as a function of ν. For ν > 0.5,

gα,α+1 → e2/h (if α = 6, α + 1 = 1), with all other off-diagonal matrix elements vanishing.
In other words, all electrons leaving contact α+ 1 scatter into contact α, and therefore [17]

g(ν) ν→1−→ g(0) =
e2

h




−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1
1 0 0 0 0 −1



. (1)

Solving Î14 = ĝ(0) · V̂ , we find V5 = V6 = h/e2, V2 = V3 = 0, thus RH
14,62 = RH

14,53 = h/e2,
RL

14,23 = RL
14,65 = 0. This shows that the first quantized plateau is due to the chiral edge

currents (shown as oriented thick lines in fig. 1(b)), which become established for ν > 0.5.
Variations of ĝ(ν) from ĝ(0) give rise to fluctuations in the resistances. From fig. 2 we also see
that if ν < νc (vertical line), gαβ ≈ gβα with high accuracy, i.e. ĝ is symmetric. For ν > νc, ĝ
is not symmetric. The reasons for this behavior and its consequences are discussed later.

Solving Î14 = ĝ(ν)·V̂ for ĝ(ν) shown in fig. 2, we find the various resistances as a function of
0 < ν < 1. Figure 3(a) shows a pair RL and RH . Three different regimes appear: for ν > 0.46,
RH = h/e2 and RL = 0, corresponding to the first IQHE plateau. For 0.42 < ν < 0.46, RL

exhibits large fluctuations while RH is quantized. This is precisely the type of behavior
observed in ref. [1]. For ν < 0.42, the transition to the insulating phase occurs, and both
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Fig. 3 – (Color online) RL and RH calculated from the conductance matrix displayed in fig. 2, in units
of h/e2. (a) Transition from the insulator to the first IQHE plateau in the LLL. (b) Transition from
the first to the second IQHE plateaus. (c) The sum RL+RH = R14,63 of the resistances shown in (b),
and R2t = R63,563 (displaced by −0.5h/e2). Vertical lines separate the various fluctuation regimes.

resistances increase sharply. The fluctuations are very large and sharp because the calculation
is done at T = 0. At finite T , the peaks are smeared out.

The transition 1 < ν < 2 can also be investigated using the same ĝ(ν) matrix of the
LLL. Similar to ref. [19], we assume that the completely filled spin-up LLL contributes its
background chiral edge current. As a result, we simply add ĝ(0) = ĝ(ν = 1) of eq. (1)
to the values of ĝ(ν) describing the partially filled spin-down LLL. Although the two LLLs
have different spins, the contacts mix electrons with both spins in equilibrium, justifying this
addition. Resistances RH

14,62 and RL
14,23 computed from ĝ(0) + ĝ(ν) are shown in panel (b) of

fig. 3, whereas in panel (c) we plot their sum RL
14,23 + RH

14,62 = R14,63. The three regimes
found experimentally [2, 3] are clearly observed. At low-ν (high-B), the fluctuations of RH

and RL are correlated, RL + RH = h/e2. At high-ν (low-B) RH = h/2e2 is quantized while
RL still exhibits strong fluctuations. In the intermediate regime, both RH and RL have
strong, uncorrelated fluctuations. The other pair, RH

14,53 and RL
14,65, also exhibits these three

regimes, although their detailed fluctuations are different from RH
14,62 and RL

14,23. From over
20 different simulations we found that the low-ν regime where RL+RH = h/e2 is a very robust
feature, although it is maintained up to different values of ν in different samples. The high-ν
regime with fluctuations in RL and quantized RH is seen frequently. However, when strong
direct tunneling occurs between the source or the drain and their nearby voltage probes, RH

also fluctuates. Such strong tunneling is an artifact of our simulation [20]. We suppress it
by isolating the source and drain from nearby contacts with triangular potential barriers in
the corners of the sample (see fig. 1(a)). Figure 3(c) also compares RL + RH = R14,63 with
R2t = R63,63. (In the setup for measuring R2t, the current is Î63 = (0, 0, 1, 0, 0,−1)T , and
R2t = V6 − V3.) As found experimentally [2], the two curves are very similar.

So far, we have demonstrated that our numerical simulations reproduce the experimental
results. We now explain the underlying physics using a simple but very general model. We
introduce the 6× 6 matrix l̂(a, b)|αβ = e2

h (δαaδβb − 1
2δαaδβa − 1

2δαbδβb). Let r̂(a, b) = l̂(a, b) +
l̂(b, a). Solving Î = r̂(a, b) · V̂ shows that r̂(a, b) describes a h/e2 resistor between contacts a
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and b. Since r̂(a, b) is symmetric, the symmetric part ĝs of the conductance matrix ĝ is ĝs =∑
a<b rabr̂(a, b), where rab = min(pa→b, pb→a). Given the constraints on ĝ, we find [18] that the

remaining terms group into ĝ− ĝs =
∑

a1 �=···�=an
ca1,...an

r̂(a1, . . . , an). Here, a1→a2→ · · ·→a1

is a closed chiral loop linking 3 ≤ n ≤ 6 of the contacts, with a direction of flow dictated by
the sign of B. The c’s are positive numbers, and r̂(a1, . . . , an) = l̂(a1, a2) + · · · + l̂(an, a1).
For example, r̂(1, 2, 3, 4, 5, 6) = ĝ(0) of eq. (1) describes the edge currents of the full LL, but
shorter chiral currents (n < 6) may also contribute to ĝ(ν) at intermediate ν.

At low-ν, all states are localized and transport in the LL can only occur through tunneling.
The semi-classical limit of a possible scattering scenario is sketched on the left side of fig. 1(c).
Electrons can go from 2 to 1 either through direct tunneling (with amplitude t21), or by
tunneling to a localized state near contact 6, and from there back to 1, with amplitude
r21t26t61r12e

iϕ [21]. Here ϕ is the phase shift from propagating on chiral states near the
three contacts. Electrons can make any number of such loops before entering 1; summing
over all we find the total scattering probability to be p2→1 = |t21 + r21t26t61r12e

iϕ/(1 −
t26t61t12e

iϕ)|2 ≈ |t12|2 + 2 Re(t12t26t61eiϕ) + O(t4). Similar arguments give p1→2 = |t12|2(1 −
|t16|2)(1−|t26|2)/|1−t26t61t12eiϕ|2 ≈ |t12|2+O(t4). Thus g12 ≈ g21 and their main contribution
to ĝ is |t12|2r̂(1, 2). The non-symmetric part c = 2 Re(t12t26t61eiϕ) contributes to a small chiral
current between contacts 1, 2, 6, as can be checked by computing g16, g61, g26 and g62 similarly.
These processes contribute a total of r12r̂(1, 2) + r16r̂(1, 6) + r26r̂(2, 6) + cr̂(1, 2, 6) to ĝ. The
symmetric resistance terms, of order |t|2, are due to direct tunneling between contacts, and
at low-ν they dominate the small chiral currents, of order |t|3. This explains why for ν < νc,
ĝ is symmetric to high accuracy (see fig. 2). At higher ν, edge states connecting consecutive
contacts appear. As already discussed, as ν → 1, ĝ → ĝ(0). For intermediate ν, shorter chiral
loops containing edge states can be established through tunneling, as sketched on the right
side of fig. 1(c). Assume that an electron leaving contact 3 can tunnel with amplitudes t3 and
t5 to and out of a localized state, to join the opposite edge current and enter 5. It follows [10]
that p3→5 = h

e2 g53 = |t3t5/[1 − r3r5 exp[i2πφ/φ0]]|2, while p5→3 = 0 (no electron leaving 5
enters 3). Here φ is the flux enclosed in the localized state. Then r35 = min(p3→5, p5→3) = 0
and the contribution to ĝ is just p3→5 l̂(5, 3). This term combines with parts of l̂(3, 4) and
l̂(4, 5) to create a chiral current p3→5r̂(3, 4, 5). Physically, this contribution describes the
back-scattered current of the Jain-Kivelson model [10].

In general, the transport involves both tunneling and chiral currents, but ĝ can always be
decomposed into symmetric resistances terms plus chiral loops. Consider the general form

ĝ = nĝ(0) + r12r̂(1, 2) + r16r̂(1, 6) + r26r̂(2, 6) + r34r̂(3, 4) + r45r̂(4, 5) + r35r̂(3, 5) + c0ĝ
(0) +

+ c1r̂(1, 2, 6) + c2r̂(2, 3, 5, 6) + c3r̂(3, 4, 5) + c4r̂(1, 2, 3, 5, 6) + c5r̂(2, 3, 4, 5, 6).

The first term describes the contribution of the n completely filled lower LLs. All other terms
describe transport in the LL hosting EF (see fig. 1(b)), with the restriction that there is no
tunneling between the left and the right side of the sample. This is justified physically because
tunneling between contacts far apart is negligible. The largest such terms, r23 and r56, are
found to be less than 10−4 (see, e.g., fig. 2, where r23 = h/e2 · min(g23, g32)). Solving both
Î14 = ĝ · V̂ and Î63 = ĝ · V̂ ′ we find the identity

R14,63 = R63,63 =
h

e2
1

n+ c0 + c2 + c4 + c5
.

Since R63,63 = R2t, whereas R14,63 = RH
14,62 + RL

14,23 = RL
14,65 + RH

14,53, this means that
R2t = RH + RL irrespective of the value of the 12 parameters. In other words, this identity
is obeyed for all ν, in agreement with fig. 3(c) (the r23 and r56 terms lead to perturbative
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corrections [18]). Here n + c0 + c2 + c4 + c5 is the total chiral current flowing along the
6 → 5 and 3 → 2 edges. At low ν, where edge states are not yet established, chiral currents
in the LL hosting EF are negligible, c0 = c2 = c4 = c5 = 0 (as discussed, pure tunneling
contributions are of order c ∼ |t|3. Below νc, all |t|2 < 10−4, see fig. 2). It follows that here
RL +RH = h/ne2, explaining the perfect correlations of the two resistances at low ν, observed
both experimentally and numerically.

The high-ν regime with quantized RH and fluctuating RL can also be understood easily. As
discussed, the transport in the LL hosting EF is dominated here by the edge states; tunneling
between opposite edge states (facilitated by localized states inside the sample) creates back-
scattered currents, as in the Jain-Kivelson model [10]. We sketch this situation in fig. 1(d). Let
t1, t2 and t3 be total probabilities for all possible tunneling processes leading to back-scattering
on the corresponding pairs of edge states. Reading the various scattering probabilities off
fig. 1(d), we find that ĝ = nĝ(0)+(1−t1−t2−t3)ĝ(0)+t2[r̂(1, 2, 6)+r̂(3, 4, 5)]+t3r̂(1, 2, 3, 5, 6)+
t1r̂(2, 3, 4, 5, 6). The first term represents the contribution of the lower n completely filled
LLs, the others are the forward and the back-scattered chiral currents in the LL hosting EF .
Î14 = ĝ · V̂ is trivial to solve. We find RH

14,62 = RH
14,53 = h/(n+ 1)e2, i.e. the Hall resistances

are precisely quantized, whereas RL
14,23 = RL

14,65 = [h/(n + 1)e2] · t2/(n + 1 − t2). Since t2
has a strong resonant dependence on EF (or ν), it follows that here the two RL fluctuate
strongly, but have the same pattern, as indeed shown experimentally in ref. [3]. In particular,
if n = 0 (transition inside spin-up LLL), RL can be arbitrarily large when t2 → 1, whereas
in higher LLs the amplitude of fluctuations in RL is h/[n(n+ 1)e2] or less, as observed both
experimentally and in our simulations.

We have verified that the Onsager relation ĝ(−B) = [ĝ(B)]T holds [14]. The reason is
that the time-reversal symmetric tunneling is not affected by this sign change, while the flow
of the chiral currents is reversed. The model mirrors itself with respect to the horizontal
axis if B → −B, see fig. 1. The solutions of Î14 = ĝ(−B) · v̂ are related to the solutions
of Î14 = ĝ(B) · V̂ by v2 = V6, v3 = V5, v5 = V3 and v6 = V2, provided that the same
index exchanges, 2 ↔ 6, 3 ↔ 5, are performed for all rab terms. Terms not invariant under
this transformation are r12, r16, r43, r45, r23 and r56. As already discussed, the last two
terms are vanishingly small. In the experimental setup, the first four terms are also very
small, due to the long distance between source and drain, and their nearby contacts [20].
The dominant terms r26 and r35 are invariant under the index exchange. Hence, it follows
that RL

14,23(B) = RL
14,65(−B) and vice versa, i.e. with good accuracy, the fluctuation pattern

of one RL mirrors that of the other RL when B → −B. This symmetry has indeed been
observed experimentally, with small violations at low ν [3] due to small corrections from the
non-invariant contributions r12–r16 and r43–r45 [18].

We now summarize our understanding of the various results of IQHE measurements on
mesoscopic samples. Similar to experiments, we find that the transition in higher LLs is
naturally divided in three regimes. At low ν, the LL hosting EF is insulating and there are
no edge states connecting the left and right sides of the sample. If tunneling between left and
right sides is also small, we find that the fluctuations of pairs of resistances are correlated
with excellent accuracy, RH +RL = h/ne2. This condition is obeyed if the typical size of the
wave function (localization length) is less than the distance between contacts 2 and 3. When
the size of the wave function becomes comparable to this distance, edge states are established
and the correlation between RL and RH is lost. On the high-ν side, the edge states are
established, but localized states inside the sample can help electrons tunnel between opposite
edges, leading to back-scattering as in the Jain-Kivelson model. In this case, we showed
that RL fluctuates while RH is quantized. Tunneling between opposite edges is likely only
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if the typical size of the wave function is slightly shorter than the distance between opposite
edges. It is then apparent that the central regime in figs. 3(b) and (c) corresponds to the
so-called “critical region”, where the typical size of the electron wave function is larger than
the sample size (distance between contacts 2 and 3, at low ν, or between 2 and 6 at high ν).
In these mesoscopic samples, the voltage probes act as markers on a ruler, measuring the
size of the wave functions at the Fermi energy. To our knowledge, this is the first time when
the boundaries of the critical region are pinpointed experimentally. This opens up exciting
possibilities for experimentally testing the predictions of the localization theory of IQHE.

To conclude, we used both first-principles simulations and a simple model for the general
allowed structure of the conductance matrix to explain the phenomenology of the mesoscopic
IQHE, for the six-terminal geometry. We identified tunneling and chiral currents as coexisting
mechanisms for charge transport in these mesoscopic samples, and argued that the boundaries
between the three distinct fluctuation regimes mark the critical region.
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