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Exciton dissociation mediated by phonons in organic photovoltaics
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It is well known that phonons can overscreen the bare Coulomb electron-electron repulsion, turning it into
the effective attraction that binds the Cooper pairs responsible for BCS superconductivity. Here, we use a simple
lattice model to prove that the counterpart of this is also possible, whereby phonons overscreen the bare electron-
hole attraction and may turn it repulsive at short distances, driving exciton dissociation in certain regions of the
parameter space. We argue that this phonon-mediated short-range screening may play an important role in the
physics of organic solar cell materials (and other materials with strong electron-phonon coupling) and could
point the way to new strategies for optimizing their efficiencies.
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I. INTRODUCTION

Organic solar cells (OSCs) have been heralded as a rev-
olutionary technology in the renewable energy sector due to
their flexible and light-weight nature and low production cost
[1–4]. While power conversion efficiencies of OSC devices
have been improving [5], they have not yet reached levels high
enough for OSCs to realize their promise; this is largely due
to the challenge of efficiently extracting free charge carriers
without detrimental losses [6–9].

All light-harvesting devices start by capturing a photon
to excite a bound electron-hole pair—an exciton. Voltage is
ultimately produced through the generation of free charge car-
riers, requiring the dissociation of the exciton through some
internal mechanism.

Conventional (inorganic) solar cells, such as those based
on Si or GaAs, have highly effective charge screening. Be-
cause the screened Coulomb attraction is weak, the Wannier
excitons it creates are highly extended and have small binding
energies (few tens of meV). A combination of thermal fluctua-
tions and external electric fields is therefore sufficient to drive
dissociation.

By contrast, OSC materials have poor charge screening,
resulting in small Frenkel excitons with large binding energies
of a hundred meV or more [10,11]. These are stable against
thermal fluctuations and fairly long-lived, leading to high
recombination losses and reduced efficiencies. This is why
understanding and engineering exciton dissociation in OSCs
remains a foundational challenge [12–16].

To date, the most investigated approach to engineering dis-
sociation is to use bulk-heterojunction interfaces combining
donor and acceptor materials, chosen so that the potential
gradient at their interface helps overcome the high binding
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energies. This setup was shown to produce higher yields,
which was attributed to enhanced dissociation of so-called
charge-transfer states at the donor/acceptor (D/A) interface
[17,18]. Charge-transfer states are believed to be relatively
short-lived excitons composed of an electron and a hole that
span neighboring molecular sites. While such excitons are
quite commonly generated in the bulk [19], they delocalize
more easily when they span a D/A interface [20–22]. How-
ever, more work is needed to understand both the nature of
these states, and how they can be engineered to optimize
exciton dissociation.

Alongside charge screening, the vibrational character-
istics (phonon modes) of OSCs are also relevant to
dissociation—and even less well-understood. Phonons couple
strongly to molecular orbitals, as evidenced by photoemission

FIG. 1. Lattice distortion from an exciton, if the linear coupling
between carriers and lattice is dominated by the gradient of the
carrier-lattice potential. For this type of carrier-phonon coupling,
carriers of opposite charge induce opposite lattice distortions. (Left)
When the electron and the hole are far apart (red and blue circles,
respectively) their excess charge induces local lattice distortions,
giving rise to polarons. (Right) A small Frenkel exciton produces
a much weaker electric potential and thus a much smaller lattice
distortion.
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experiments [23], and thus may be playing a role in the exciton
dynamics [24]. Most of the studies to date have focused on
the role of phonons in the formation of charge transfer states
[25,26], and how electron-phonon coupling affects the yield
across the D/A interface [27–32].

Here we present a fundamentally different way whereby
electron-phonon coupling can influence exciton dissociation,
even in the absence of a D/A interface. We show that
in certain circumstances, sufficiently strong electron-phonon
coupling can be directly responsible for exciton dissociation,
despite the presence of significant Coulomb attraction be-
tween the electron and the hole.

In lattice models, carrier-lattice coupling arises by two
distinct paths. The first, which is typically more dominant in
polar materials, comes from the modulation of the Coulomb
interactions between carriers and ions when the ions are
displaced from their equilibrium positions. In the linear ap-
proximation, the strength of this coupling is proportional to
the gradient of the carrier-ion potential; because of this, carri-
ers of different charge distort the lattice in opposite directions,
as illustrated in Fig. 1(a). This type of coupling is most simply
described by the Holstein model [33,34], but qualitatively
similar physics is valid in Fröhlich, breathing-mode phonon
and deformation potential couplings as well [35]. This is the
type of coupling of primary interest to us in this work.

Carrier-phonon coupling also arises from the modulation
of the hopping integrals when sites are displaced from their
equilibrium position. This coupling is typically more domi-
nant in covalent materials, and is described by Peierls-type
couplings, e.g., the Su-Schrieffer-Heeger model for poly-
acetylene [36]. The charge of the carrier is irrelevant in
determining the favorable distortion for this second type of
coupling: shorter bonds lead to larger magnitude of hoppings
and therefore to lower energies for both electrons and holes.
The overscreening phenomenology that we discuss in work
does not happen when this second type of coupling is domi-
nant.

The basic idea of interest to us is sketched out in Fig. 1,
where we compare the effects of the first type of electron-
phonon coupling when the hole and electron are far apart (left
panel) versus when bound in a small exciton (right panel). The
addition of an excess carrier results in a local lattice distortion
that dresses that carrier into a polaron. Because the electron
and the hole have opposite charges, they create opposite lattice
distortions in their vicinity. However, when they are bound
into a small exciton, their clouds partially cancel each other
out, and the distortion is much weaker. Another way to say
this is that there is less excess local charge in the presence
of a small exciton—hence a smaller local lattice distortion is
expected.

In this scenario, the electron-phonon coupling lowers the
energy of the dissociated state through polaron formation,
while having little effect on the exciton binding energy. For
large enough coupling this leads to outright dissociation, as
we show next. Even when that is not the case, our work
shows that in materials with strong carrier-phonon coupling
of the first type, one must take polaron formation into consid-
eration when choosing the donor/acceptor materials, because
the polaronic contribution to the energetic landscape can be
considerable.

It is important to acknowledge that the idea of exciton dis-
sociation driven by electron-phonon coupling was proposed
previously by Sumi in Ref. [37], where he used a variational
approximation to study the effect of Fröhlich coupling on an
exciton. His prediction of a sharp transition between bound
(exciton) and unbound (free electron and hole polarons) states
was later discredited by Gerlach and Löwen [38], who proved
that sharp transitions are forbidden in this class of Hamil-
tonians and concluded that overscreening is impossible in
this context. We find a smooth crossover between the two
types of states, fully consistent with the mathematical proof
of Ref. [38]. Our work shows that the contradiction between
Refs. [37,38] is not because overscreening is impossible, but
because the predicted sharp transition was an artifact of the
variational approximation [39] used by Sumi.

The article is organized as follows. Section II introduces
the model we use to study this problem, and Sec. III explains
our formalism and approach. Key results are shown in Sec. IV,
while Sec. V contains an extended discussion of the various
approximations made in the model and the relevance of this
phenomenology in the context of OSCs.

II. THE MODEL

We consider a single electron-hole pair in a one-
dimensional (1D) ionic chain, where each site supports a
single on-site orbital and a dispersionless Einstein phonon
mode. The single electron-hole pair assumption is reasonable
if, for example, the concentration of photo-generated electron-
hole pairs in the material is very low. We focus on the 1D
chain because here it is known that Coulomb attraction always
results in the formation of strongly bound excitons, unlike in
higher dimensions where excitons can be either exponentially
weakly bound (in 2D) or unstable unless the attraction is suf-
ficiently strong (in 3D) [40]. Thus demonstrating dissociation
in 1D would imply similar behavior in higher dimensions,
given that the exciton is even more loosely bound there.

Our Hamiltonian reads

Ĥ = T̂e + V̂e−h + Ĥph + V̂e−ph + V̂h−ph. (1)

Here, T̂e = ∑
kσ εkc†

kσ
ckσ is the kinetic energy of free elec-

trons in the conduction band, described by a tight-binding
model with a dispersion εk = −2t cos k defined by the hop-
ping t and momentum k ∈ (−π, π ] of the bare electron (the
lattice constant is set to a = 1, also h̄ = 1). The creation oper-
ator c†

kσ
adds an electron with momentum k and spin σ in this

band. Its real space counterpart is c†
nσ , where n = 1, . . . , N

indexes the sites of the chain, with N → ∞. Hole creation
operators in real space are denoted by h†

nσ . For simplicity, we
assume that holes are localized (we reflect on this assumption
in Sec. V). We note that with these choices, and in the absence
of the electron-phonon coupling introduced next, the electron-
hole continuum extends from −2t to +2t . One can trivially
add an on-site electron energy such that εk → εk + εe =
−2t cos k + 2t + �, shifting the electron-hole continuum to
start at the gap energy � and extend up to � + 4t . Doing
this simply shifts the electron-hole spectrum as a whole, by
the same amount εe, even when Coulomb interactions and/or
electron-phonon coupling are turned on. The exciton binding
energy that is our primary focus (see below) is not affected
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by this overall shift, which is ignored in the remainder of this
work.

The electron-hole interaction V̂e−h is modeled as an on-site
Coulomb attraction

V̂e−h = −U
∑

n,σ,σ ′
h†

nσ hnσ c†
nσ ′cnσ ′ , (2)

characterized by U > 0. Longer (but finite) range attractions
can be treated similarly and lead to quantitative changes only,
at the cost of adding more parameters.

Optical phonons are described with an Einstein model:

Ĥph = �
∑

n

b†
nbn,

where b†
n creates a phonon with energy � at site n. Finally, we

use the Holstein carrier-lattice couplings:

V̂e−ph =Me

∑
nσ

c†
nσ cnσ (bn + b†

n), (3)

V̂h−ph =Mh

∑
nσ

h†
nσ hnσ (bn + b†

n) (4)

with electron/hole-phonon couplings Me and Mh, respec-
tively, as the simplest model to describe carrier-phonon
coupling in a polar material.

Even after all these simplifications, there are four dimen-
sionless parameters: U/t,�/t, Me/t, Mh/t . To avoid further
complications, we set the temperature T = 0. This is justified
because we are interested in cases where all energy scales
(including the exciton binding energy) are much larger than
the thermal energy, as is typically the case in organic photo-
voltaics.

III. METHODS

Finite Coulomb attraction in 1D always leads to a stable,
bound exciton. Our aim is to investigate the influence of the
carrier-phonon couplings on the stability of the exciton. To do
this, we calculate the Green’s function

Gi j (z) ≡ 〈0| cihiĜ(z)h†
i c†

j |0〉 , (5)

where we reserve the index i to label the site hosting the
immobile hole (the spin degree of freedom is irrelevant for
this calculation and we ignore them from now). The electron
can move and the propagator above is the Fourier transform
(at energy z = ω + iη) of the amplitude of probability that if
the hole is at site i, the electron moves from site j to site i
within a given time interval, with both the initial and the final
states having no phonons bn|0〉 = 0. The broadening η intro-
duces an artificial lifetime ∝ 1/η for the pair to recombine,
and Ĝ(z) = (z − Ĥ )−1 is the resolvent. The associated local
density of states (LDOS), plotted in the figures, is defined as
A(ω) = −ImGii(z)/π ; invariance to translations ensures that
the LDOS is the same at all sites i.

The propagator of Eq. (5) for the full interacting Hamilto-
nian is calculated using a novel, generalized version of the
Momentum Average approximation (MA)—a method well
established and validated for studying single polarons [41–44]
and bipolarons [45–47]. This generalization allows, for the
first time, to include into the variational space configurations

with two phonon clouds located arbitrarily far apart: a hole
cloud at site i, and an electron cloud elsewhere in the chain.

We now briefly describe this method.

A. Spectrum without electron-phonon coupling

First, we need the Green’s function in the absence
of carrier-phonon coupling (Me = Mh = 0). The propagator
G(i,0)

i j (z) ≡ 〈0| cihi(z − Ĥ0)−1h†
i c†

j |0〉 corresponding to Ĥ0 =
T̂e + V̂e−h + Ĥph can be calculated analytically (see Ap-
pendix A for details). The spectrum extracted from its poles
has a discrete eigenstate at ω = −√

4t2 + U 2 and a contin-
uum for ω ∈ [−2t, 2t]. The continuum describes the electron
unbound to the hole (free to move throughout the system), i.e.,
this is the electron-hole continuum. The discrete eigenstate is
the bound exciton lying below this continuum (inside the gap)
for any value U > 0. In the absence of carrier-phonon cou-
pling, the exciton binding energy is thus EB = √

4t2 + U 2 −
2t .

B. Turning on the electron-phonon coupling:
Lang-Firsov transformation

In the presence of carrier-phonon couplings (finite
Me, Mh), if the carriers are not bound then they each create
phonon clouds in their vicinity, turning into polarons. In the
bound state, their clouds combine, resulting in an exciton-
polaron.

Because the hole cannot move in our simplified model, and
because its coupling to the lattice is local, its phonon cloud
is definitely located at hole site i. We then use the Lang-
Firsov transformation Ui = exp[ M f

�
(bi − b†

i )] to integrate out
the hole-phonon coupling:

H̃i = U†
i ĤUi = T̂e −

(
U + 2MeMh

�

)
c†

i ci − M2
h

�

+�
∑

l

b†
l bl + Me

∑
l

c†
l cl (b

†
l + bl ) (6)

after noting that U†
i blUi = bl − δi,l

Mh
�

. This transformation is
exact and shows the hole-polaron formation energy −M2

h/�

but also a change of the effective Coulomb attraction experi-
enced by the electron when at site i, U → Ũ = U + 2MeMh

�
,

arising from the electron’s coupling to the hole’s cloud in
addition to the Coulomb interaction with the hole. Apply-
ing the Lang-Firsov transformation to the propagator for the
electron-hole pair allows us to rewrite [see Eq. (5)]

Gi j (z) = e− M2
h

2�2

∞∑
n=0

1

n!

(
Mh

�

)n

Hi j (n, z̃), (7)

where the new propagators

Hi j (n, z̃) = 〈0| hiciUiG̃(z̃)h†
i c†

j b
†n
i |0〉 (8)

describe the propagation of the electron in the presence of
phonons created by the hole. To obtain Eq. (7), we used
the Baker-Campbell-Hausdorff formula to rewrite U†

i |0〉 =
e−M2

h /2�2 ∑∞
n=0

1
n! (b†

i
Mh
�

)n |0〉, and we introduced z̃ = z +
M2

h/� and the transformed resolvent

U†
i Ĝ(z)Ui ≡ G̃(z̃) = (z̃ − ĥi )

−1,
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where

ĥi = H̃i + M2
h

�
= T̂e − Ũ c†

i ci + Ĥph + V̂e−ph

describes the electron’s kinetic energy, its effective interaction
with the hole located at i, and coupling to the lattice. So far,
everything is exact.

C. MA approximation

Note that ĥi obtained above is formally equivalent to the
Hamiltonian for an electron with Holstein coupling in the
presence of an on-site “disorder” at site i. In previous work
on both 1D and 3D models, through comparison with di-
agrammatic Monte Carlo (DMC) [48,49], we have already
demonstrated that for such problems even the simplest version
of the variational momentum average (MA) approximation—
the one-site MA(0) version—is quantitatively accurate if t/�
is not too large. We use the same approximation here, straight-
forwardly generalized to include the presence of phonons
created by the hole at site i. Specifically, we implement an
MA where the variational space allows for the presence of
two phonon clouds: one at site i due primarily to the hole, and
one at any other site of the system, created by the electron.
We note that the electron cloud can be allowed to spread over
more sites [50], increasing the accuracy of the approximation;
however, the resulting improvements are quantitatively small
and do not affect the physics. For our purposes, it suffices to
proceed with the one-site cloud approximation, which predicts
energies to within a few percent accuracy [41,48,49,51].

Proceeding by analogy with the disorder MA calculation,
the equations-of-motion (EOMs) for the propagators in this
two-cloud generalization of MA are obtained by repeated use
of the Dyson identity Ĝ = Ĝ0 + ĜV̂ Ĝ0 with V̂ = V̂e−ph. The
resulting system of equations (B1)–(B3) and its derivation are
shown for completeness in Appendix B. This linear system
that emerges turns out to be amenable to further simplifica-
tions driven by the intuition that not all propagators contribute
equally: indeed, we find that about half the propagators may
be set to zero (halving the size of the system) with no notice-
able changes to the resulting spectrum. More details on this
further approximation and the intuition behind it are given in
Appendix C, and in Appendix D, we show some results that
justify the validity of this futher approximation.

D. Exciton wave function and the phonon cloud

Once the Green’s functions Gi j (z) are obtained by
solving the linear system, to further elucidate the na-
ture of the lowest-energy excitonic state in our model we
characterize the spatial extent of the exciton wave func-
tion, as well as calculate the size of its phonon cloud.
To obtain the former, we use the Lehmann decompo-
sition Gi j (z) = ∑

n 〈0|hici|ψn〉 〈ψn|c†
j h

†
i |0〉/(z − En), where

Ĥ |ψn〉 = En|ψn〉 are the eigenstates with one electron and
one hole. At the exciton energy E0, and if η is much smaller
than the gap to the continuum, there is only one domi-
nant contribution to the Lehmann sum: Gi j (z = E0 + iη) ≈

〈0|hici|ψ0〉 〈ψ0|c†
j h

†
i |0〉/iη. Therefore we can use

ρi j (E0) = | 〈0|hic j |ψ0〉 |2
|〈0|hici|ψ0〉|2

≈ |Gi j (E0)|2
|Gii(E0)|2 (9)

to characterize the probability that the electron is at a distance
| j − i| from the hole in the lowest-energy excitonic state,
scaled such that ρii(E0) = 1.

To calculate the average number of phonons Nph in the ex-
citon cloud, we use the Hellmann-Feynman theorem [52,53]:

Nph = 〈ψ0|
∑

l

b†
l bl |ψ0〉 = ∂E0

∂�
. (10)

The derivative is computed numerically with the finite-
difference approach. Both of these metrics give additional
glimpses at the impact of phonons on the dissociation process.

IV. RESULTS

A. Exciton dissociation driven by electron-phonon coupling

Armed with the methods from the previous section, we
calculate the spectrum of a system with one electron and one
hole, in the presence of short-range (on-site) Coulomb at-
traction of magnitude U > 0, and of Holstein carrier-phonon
couplings Me and Mh, respectively, to an optical dispersionless
phonon mode of energy �. As stated previously, we focus on
1D chains, where the carriers’ tendency to bind into an exciton
is enhanced. The electron’s nearest neighbor hopping is set
to t = 1; meanwhile the hole is localized, modeling either a
valence band with a very large effective mass or a hole trapped
by an acceptor impurity.

Exciton dissociation driven by the electron-phonon cou-
pling is demonstrated graphically in Fig. 2. The panels show
the contour plot of the LDOS A(ω) at the hole site versus en-
ergy and coupling Me, when U = 1, � = 0.5 and Me = −Mh

(a); Me = −0.5Mh (b); Me = −2Mh (c); and Me = Mh (d).
We focus on the low-energy eigenstates because we are

primarily interested in whether there is a bound exciton state
inside the gap, i.e., below the continuum (as already discussed,
the continuum extends up to much higher energies). In all
panels, the dashed red line shows where we expect the lower
edge of the continuum describing unbound electron- and hole-
polarons, and is obtained from their individually calculated
MA energies. Its good agreement with the spectral weight
provides a validation of the generalized MA we developed.

At Me = Mh = 0, the lowest energy feature is the discrete
peak at ω = −√

U 2 + 4t2 marking the exciton, see Sec. III A.
If MeMh < 0, with increasing Me the discrete peak merges
smoothly with the continuum at M (c)

e and the exciton dissoci-
ates into unbound electron- and hole-polarons for Me > M (c)

e .
There is no discontinuity in the LDOS at M (c)

e : thus, there is
no contradiction between our result and Ref. [38]. By contrast,
if MeMh > 0 [panel (d)], the exciton is further stabilized by
increased coupling, and additional exciton states appear below
the continuum as the effective attraction Ũ increases [40].

The carrier-phonon coupling M is set by the gradient of the
carrier-lattice potential with respect to a small lattice displace-
ment. Because the hole and the electron have opposite charge,
their respective carrier-lattice potentials have opposite signs
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FIG. 2. Contour plots of the LDOS A(ω) at the hole site when � = 0.5 and U = 1. The electron-phonon coupling Me is shown on the
x axis (the corresponding Mh is indicated on the figure). The dashed red line shows where we expect the lower edge of the continuum of
eigenstates describing unbound electron- and hole-polarons, based on their individually calculated MA energies. Its good agreement with the
calculated spectral weight provides a validation of the generalized MA we developed. The fast oscillations in the continuum weight are finite
size effects, due to the cutoff |l − i|m = 50 for the maximum distance between the two clouds; the maximum numbers of phonons in the two
clouds are set to nm = km = 20, sufficient for convergence. The discrete peak appearing below the continuum at small Me is the exciton bound
state, broadened into a Lorentzian by the finite η = 0.01. With increasing coupling, the exciton approaches the continuum and eventually
merges smoothly with it, marking its dissociation into a pair of unbound electron and hole polarons. This behavior is robust so long as the
couplings are of opposite sign, so that MeMh < 0, see (a)–(c). In contrast, when MeMh > 0, the exciton is always stable, see (d).

and thus Me and Mh have opposite signs. Physically, this is
because a lattice distortion that is energetically favorable for
an electron is generically unfavorable for a hole (left panel of
Fig. 1). Moreover, a very small Frenkel exciton with the elec-
tron and hole mostly at the same site, creates little local charge
imbalance thus only a weak lattice distortion is expected (right
panel of Fig. 1). In the atomic limit (t = 0), a vanishing
exciton-polaron binding energy −(Me + Mh)2/� ≈ 0 implies
that Me ≈ −Mh. Of course, one can envision more complex
situations where |Me| �= |Mh|, however, panels (b) and (c) of
Fig. 2 show the same phenomenology, demonstrating that ex-
citon dissociation does not require fine-tuning: it is guaranteed
to happen at large enough couplings so long as Mh/Me < 0.
On the other hand, the exciton is always stable if Mh/Me > 0
[see panel (d) of Fig. 2], because in this case the cloud created
by the exciton is larger than the sum of the individual clouds
created by the two unbound carriers, further stabilizing the
exciton. This latter finding agrees with earlier studies of the

same Hamiltonian using diagrammatic Monte Carlo (DMC)
[40]: specifically, the authors found that the critical Coulomb
coupling Uc needed to bind an exciton in 3D decreases with
increasing electron-phonon coupling when Me = Mh, indicat-
ing exciton stabilization. (They did not investigate cases with
Mh/Me < 0). Furthermore, they show that in the limit of a
heavy hole, their results agree with DMC for an impurity
problem. As mentioned, MA was benchmarked against DMC
impurity results in 1D and in 3D in Refs. [48,49], respectively.

B. Exciton dissociation phase diagram

Figure 3 traces the crossover (blue line) where the exciton-
polaron dissociates into unbound electron- and hole-polarons.
The dashed line shows the perturbation theory prediction (de-
tails in Appendix E). The agreement is excellent at small U , as
expected, while at larger U perturbation theory overestimates
the critical coupling needed for dissociation.
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FIG. 3. Exciton dissociation phase diagram. The critical
electron-phonon coupling for dissociation increases with the
Coulomb attraction U : it is calculated with MA (blue solid) and
with perturbation theory (orange dashed). The orange region is
where the lowest feature in the electron+hole spectrum is the
continuum, whereas the blue region has a bound exciton-polaron
as the lowest-energy feature. Other parameters are � = 0.5 and
Mh/Me = −1.

C. Exciton-polaron characteristics

Next, we calculate the average number of phonons Nph in
the exciton cloud, and also the probability ρi j that the electron
is at a distance | j − i| from the hole in the lowest-energy
excitonic state, scaled such that ρii = 1 (see Sec. III D for
details).

Representative results are shown in Fig. 4. For complete-
ness, panel (a) shows the LDOS versus ω and Me, with
dissociation occurring slightly above Me = 0.6. Panel (b)
shows Nph of the exciton-polaron (solid yellow line), com-
pared to the sum of the average numbers of phonons in
the electron-polaron and the hole-polaron clouds (red dashed
line); the latter are calculated individually and then summed.
As expected, when tightly bound by an attractive U , the elec-
tron and the hole largely cancel each other’s lattice distortions,
resulting in many fewer phonons than for the free polarons.

Panels (c)–(e) show ρi j versus j − i for Me = 0.4, 0.5, 0.6,
respectively [see vertical dotted lines in panels (a) and (b)].
At small couplings, ρi j is sharply peaked at the hole site i, as
expected for a strongly bound, small Frenkel exciton. As the
coupling increases, ρi j acquires “fat tails” that are consistent
with a larger exciton. Just before dissociation, ρi j spreads over
very many sites, consistent with the smooth crossover to an
unbound electron-polaron that is (nearly) equally likely to be
at any distance from the hole.

V. CONCLUSIONS

We have shown that strong carrier-phonon coupling, when
dominated by the gradient of the carrier-lattice potential, fa-
vors the dissociation of excitons into free polarons even on
1D chains where excitons should be stable for any electron-
hole attraction. This phenomenology is the counterpart to
what drives BCS superconductivity [54]. There, phonons
overscreen the electron-electron repulsion turning it into an
effective attraction. Here, phonons screen the electron-hole

FIG. 4. Characterization of the phonon cloud of the exciton-
polaron. (a) Contour plot of the LDOS at the hole site, as a function
of the coupling Me and energy ω. The yellow solid line tracks the
exciton energy while the dashed red line tracks the lower edge of
the continuum; their intersection marks the dissociation point. We
track the exciton energy up to Me = 0.6, where its binding energy
becomes comparable to η. (b) Average number of phonons Nph in the
exciton cloud (solid yellow line) and in the combined electron- and
hole-polaron clouds (red dashed line). [(c)–(e)] Probability ρi j that
the electron is at a distance | j − i| from the hole in the lowest-energy
excitonic state, scaled such that ρii = 1, for Me = 0.4, 0.5, and 0.6,

respectively. Other parameters are � = 0.5, U = 1.5, Me = −Mh,
η = 0.01, nm = km = 20, and |l − i|m = 50.

attraction and can turn it repulsive, at sufficiently strong cou-
pling.

This phenomenology is robust in any dimension and should
be considered when analyzing exciton stability in materials
with this type of carrier-phonon coupling because the critical
coupling for dissociation need not be very large. Figure 4
shows a critical value Me = −Mh ≈ 0.6, which corresponds
to a weak effective Holstein coupling λc = M2

e /2t� ≈ 0.36
for the electron, even though the bare exciton binding energy
is a considerable 0.5t for those parameters. Indeed, panel (b)
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of Fig. 4 confirms that the average phonon numbers are small.
Of course, to some extent this is because of the rather large
phonon frequency �/t = 0.5 used, although such ratios are
reasonable in some organic materials.

Regarding the main approximations in our model, (i) this
phenomenology is not affected by dimensionality. The only
difference is that in 3D, a bare exciton is stable only if the
Coulomb attraction is above a critical value [40]. Whether
the critical value is 0 (like in 1D) or finite (like in 3D) is
irrelevant: strong enough carrier-phonon coupling will lower
the effective attraction below this critical value and make the
exciton unstable. Our MA method can be straightforwardly
used to study higher-D systems.

(ii) The assumption that the hole is immobile is also not
essential: “releasing” the hole does not change this picture
qualitatively, only quantitatively. Moreover, in the context of
OSC materials doped with either acceptor or donor molecules,
it is possible to envision trapping one species of the carriers
on such molecules. Alternatively, the band structure of the
material could lead to a combination of light electrons and
heavy holes, a situation for which earlier studies have found
the stationary hole approximation justified [40].

(iii) The assumptions that the coupling is to a single optical
mode and that it is of Holstein type are also not essential.
Regardless of such details, polaron formation associated with
local excess charge leads to a lowering of the energy. That
is the only ingredient necessary for the mechanism discussed
here.

(iv) The assumption of a short-range Coulomb attraction
is nontrivial, however, and relaxing it can lead to qualitative
changes. This is because the phonon screening discussed here
acts only at electron-hole distances r < D, where D is the
sum of the radii of the two polarons. If the electron and hole
are sufficiently far, so that each can create its polaron cloud
(r > D), the phonon screening vanishes. This contribution
looks roughly like the blue lines in Fig. 5, where �EB ≈
−2MeMh/� is the difference between the exciton-polaron and
the free polarons formation energies. While �EB increases
with increasing coupling, D decreases as the polarons become
smaller. If the Coulomb attraction decreases rather slowly
with r (dashed line), it is possible that as the coupling goes
from weak (top panel) to strong (middle panel), the total
potential has a well whose minimum moves from r ∼ 0 to r ∼
D. The latter well can still trap a stable exciton in 1D, because
both the lower dimensionality and the increased effective mass
of strongly coupled Holstein polarons would favor a bound
state. We believe that this explains why exciton dissociation
was not observed in Ref. [55]. However, in higher dimensions
relevant for OSCs and/or for lighter Peierls polarons [44],
such a “donut”-shaped trap might not suffice to bind the po-
larons and the lowest-energy excitonic state at strong coupling
would still exhibit dissociation.

A new scenario can occur if the bare Coulomb attraction
decreases significantly from r = 0 to r = D. As sketched in
Fig. 5(c), r = 0 can be a local minimum of the total poten-
tial (black line) followed by a potential barrier and a very
shallow potential well for r > D. A Frenkel exciton with
radius smaller than D can then be metastable, with a lifetime
inversely proportional to the probability of tunneling through
the barrier.

FIG. 5. Schematic of the effective potential for the exciton-
polaron. Screened electron-hole interaction (black line), obtained by
summing the bare long-range Coulomb attraction (dashed line) and
the contribution from phonon screening (blue line). (Top) When the
coupling is weak, the combined polaron radius D is large and the
screening is weak. (Middle) Strong coupling leads to small polarons
with a strong short-range repulsion. The total potential has a min-
imum at r ∼ D. (Bottom) For a rapidly-decreasing bare attraction,
a metastable exciton may be trapped at the r = 0 local minimum,
before tunneling into a dissociated state.
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Even though the lowest-energy excitonic state is the
dissociated state, small excitons loaded optically into the
metastable state might live long enough to control the OSC’s
behavior. This may explain the very puzzling fact that some
OSC materials, like pure C60 films, have both very strongly
bound excitons [56,57] and finite, albeit small, charge sep-
aration efficiency [58]. The latter would represent the small
fraction of excitons that tunnel out and dissociate. This sce-
nario is also qualitatively consistent with the observation that
a dilute (∼10%) concentration of donor molecules increases
the charge separation efficiency. Such molecules boost light
absorption, so the metastable exciton state is populated more
efficiently. This will increase the concentration of charge-
separated pairs accordingly if the donor molecules are dilute
enough to allow charge separation to proceed, explaining why
peak efficiency occurs at a very low donor molecules con-
centration [58]. The above scenario cannot be verified with
MA; however, a recent study found a weak potential barrier
due to nonlocal phonon screening in lead halide perovskites
[59]. While their parameters are very different than ours, their
finding supports the possible appearance of this new scenario
in the right circumstances.

The results presented in this work illustrate some of the in-
teresting physics expected in the many OSCs that have strong
carrier-phonon coupling and point towards possible ways to
exploit it. We note that we have not considered what happens
in similar circumstances in systems dominated by Peierls-type
couplings, nor in systems with dual-type couplings. We plan
to investigate some of these topics in more detail in future
works.
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APPENDIX A: FREE CARRIER GREEN’S FUNCTION

The Green’s function G(i,0)
i j (z) corresponding to Ĥ0 =

T̂e + V̂e−h + Ĥph, i.e., for the system without carrier-phonon
coupling, can be calculated analytically. In the absence of
electron-phonon coupling there is only an electron hopping
on a 1D tight-binding lattice, subject to an on-site attractive
potential from the static hole located at i. The corresponding
Hamiltonian is H0 = Te − Uc†

i ci. Here we calculate its lattice
Green’s function:

G(i,0)
l j (z) = 〈0| cl [z − H0]−1c†

j |0〉 . (A1)

Applying Dyson’s identity, we find the EOM:

G(i,0)
l j (z) = gl− j (z) − Ugi− j (z)G(i,0)

li (z), (A2)

where the free lattice Green’s functions gl− j (z) =
〈0| cl [z − Te]−1c†

j |0〉 can be calculated analytically:

gδ (z) = |ζ (z)||δ|/√z − 2t
√

z + 2t , with ζ (z) = z/2t −√
z/2t − 1

√
z/2t + 1.

Equation (A2) can be solved trivially to find

G(i,0)
li (z) = G(i,0)

l−i (z) = gl−i(z)

1 + Ug0(z)
(A3)

and

G(i,0)
ll (z) = g0(z) − U

[gi−l (z)]2

1 + Ug0(z)
. (A4)

The propagators G̃(i,0)
il (z) appearing in the main text and in

other appendices have the same expressions but with U → Ũ ,
where Ũ is the overscreened Coulomb attraction defined in
Sec. III.

We note that the solution obtained in this Appendix is
exact, as can be expected from the fact that without electron-
phonon coupling, this is a solvable two-body problem.
Dyson’s identity, while often used in the context of pertur-
bative or RPA-style calculations, in this case merely serves as
a way of generating the equations-of-motion hierarchy for the
propagators, which are then solved exactly.

APPENDIX B: GREEN’S FUNCTION WITH
CARRIER-LATTICE COUPLING

Here the MA equations of motion are obtained by re-
peated application of the Dyson identity G̃(z̃) = Ĝ(i)

0 (z̃) +
G̃(z̃)V̂e−phĜ(i)

0 (z̃) where Ĝ(i)
0 (z) = (z − T̂e + Ũ c†

i ci )−1 is the
resolvent in the absence of electron-phonon coupling. We
note that its corresponding Green’s functions G̃(i,0)

i j (z) =
〈0|ciĜ

(i)
0 (z)c†

j |0〉 equal those calculated in Sec. A upon replac-
ing U → Ũ .

Using Dyson’s identity once, we find

Hi j (n, z̃) = G̃(i,0)
i j (z̃ − n�)

(
Mh

�

)n

e−M2
h /2�2

+ G̃(i,0)
i j (z̃ − n�)Me[nHii(n − 1, z̃)

+ Hii(n + 1, z̃)]

+
∑
l �=i

G̃(i,0)
l j (z̃ − n�)MeFill (n, 1, z̃). (B1)

Here, the terms on the second line arise when the electron
travels to site i and adds to or removes from the phonons
already present there, while the last line describes terms where
the electron moves to some other site l and starts a new cloud
there, with the corresponding generalized two-cloud propaga-
tor:

Fi jl (n, k, z̃) ≡ 〈0| cihiUiG̃(z̃)h†
i c†

j (b
†
i )n(b†

l )k |0〉 . (B2)

The equation of motion (B1) is exact. Solving it necessitates
calculating the propagators Fill that appear in it. We generate
their equations of motion using again the Dyson identity,
but now also imposing the variational constraint consistent
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with the one-site MA(0) approximation for the electron cloud,
namely that additional phonons cannot be created away from
the two existing clouds. The resulting EOMs are

Fill (n, k, z̃) = MeG̃(i,0)
ll (z̃ − (n + k)�)[kFill (n, k − 1, z̃)

+ Fill (n, k + 1, z̃)]

+ MeG̃(i,0)
il (z̃ − (n + k)�)[kFiil (n, k − 1, z̃)

+ Fiil (n, k + 1, z̃)],

Fiil (n, k, z̃) = MeG̃(i,0)
ii (z̃ − (n + k)�)[kFiil (n, k − 1, z̃)

+ Fiil (n, k + 1, z̃)]

+ MeG̃(i,0)
il (z̃ − (n + k)�)[kFiil (n, k − 1, z̃)

+ Fiil (n, k + 1, z̃)]. (B3)

Equations (B1)–(B3) define a linear, inhomogeneous sys-
tem of coupled equations that can be numerically solved for
each value of z, with the resulting Hi j (n, z̃) then used in Eq. (7)
to construct Gi j (z). However, this approach is computationally
intensive because one needs large cutoffs for the maximum
numbers km, nm of phonons in the two clouds, as well as for
the maximum distance |l − i|m between the clouds, before
convergence is reached. An improved approach is discussed
in Appendix C.

APPENDIX C: SIMPLIFYING THE EOMS

A much more efficient yet still accurate solution to
Eqs. (B1)–(B3) can be obtained by taking advantage of
the fact that for the energies of interest, which lie below
the free electron continuum, the free propagators G̃(i,0)

il (z)
decrease exponentially with the distance |l − i|. If we keep
only the largest term with l = i, then Eqs. (B3) split into
two uncoupled recurrence relations, one for Fill and one for
Fiil , with only the former needed in Eq. (B1). This former
recurrence relation can be solved with the ansatz:

Fill (n, k, z̃) = A(i,l )
k (z̃ − n�)Fill (n, k − 1, z̃), (C1)

where we note that Fill (n, 0, z̃) ≡ Hil (n, z̃). The continued
fractions

A(i,l )
k (z) = kMeG̃(i,0)

ll (z − k�)

1 − MeG̃(i,0)
ll (z − k�)A(i,l )

k+1(z)
(C2)

are calculated starting from A(i,l )
km+1(z) = 0 for a sufficiently

large km to ensure the desired accuracy. In particular,
this means that we can replace Fill (n, 1, z̃) = A(i,l )

1 (z̃ −
n�)Hil (n, z̃) in Eq. (B1) to convert it into a linear system
linking only the Hi j propagators. This still requires a summa-
tion over all the sites in the system, which in practice means
summing over sites l up to a distance large enough from i that
the sum converges.

An efficient solution of such a linear system was proposed
in Refs. [48,49] and we adopt it here. It is based on the ob-
servation that for |l − i| � 1, the local potential Ũ created by
the hole becomes irrelevant and the impurity Green’s function

reduces to the free electron propagator

G̃(i,0)
ll (z̃) → g0(z̃) = 1

N

∑
k

1

z̃ − εk
= 1√

z̃ − 2t
√

z̃ + 2t
.

(C3)
As a result, for |l − i| � 1, the continued fractions ap-
proach an asymptotic value that becomes independent of
i, l: A(i,l )

1 (z̃ − n�) → �MA(z̃ − n�)/Me. Physically, �MA(z)
is the MA(0) self-energy of the electron-polaron in the absence
of the ‘impurity’ potential created by the hole located at i (see
Ref. [41] for a derivation)

�MA(z) = M2
e g0(z − �)

1 − 2M2
e g0(z−�)g0(z−2�)

1− 3M2
e g0 (z−2�)g0 (z−3�)

1−...

. (C4)

Because this asymptotic value is independent of l , we can
define a renormalized energy

vil (z̃ − n�) = MeA(i,l )
1 (z̃ − n�) − �MA(z̃ − n�) (C5)

which vanishes fast with increasing |l − i|. The sum in
Eq. (B1) can be recast in terms of it by renormalizing the
energy argument of the free propagators:

Hi j (n, z̃) = G̃(i,0)
i j (˜̃zn)

(
Mh

�

)n

e− M2
h

2�2

+ G̃(i,0)
i j (˜̃zn)Me[nHii(n − 1, z̃)

+ Hii(n + 1, z̃)]

+
∑
l �=i

G̃(i,0)
l j (˜̃zn)vil (z̃ − n�)Hil (n, z̃), (C6)

where we defined ˜̃zn ≡ z̃ − n� − �MA(z̃ − n�). Equa-
tions (C6) converge much more quickly with the summation
over l and can be solved efficiently.

The accuracy of the approximation of replacing the cou-
pled Eqs. (B1)–(B3) with the much more compact and
efficient Eq. (C6) is validated in Appendix D.

APPENDIX D: FULL VERSUS APPROXIMATE
VARIATIONAL SOLUTIONS

The full variational solution of the particle+hole propa-
gator can be obtained by simultaneously solving Eqs. (7),
(B1), and (B3). They can be solved numerically, but this is
slow because exceedingly large truncation cutoffs (system
sizes) are required for convergence. Above in Appendix C, we
proposed a much more efficient approximation which replaces
Eqs. (B1)–(B3) with Eqs. (C6).

To validate this approximation, in Fig. 6, we show a typical
comparison of the results of the two methods for the LDOS
at the hole site, focusing on the lower-energy part of the
spectrum, of interest for the dissociation issue. Evidently, the
agreement is very good. Similar diagrams were produced in
all parameter regimes explored in this paper, thus effectively
validating our approximation.
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FIG. 6. Comparison of the LDOS at the hole site from solving
the full variational solution described by Eqs. (7), (B1), and (B3),
shown in the left panel, versus the simplified and much more efficient
Eq. (C6), shown in the right panel. Visually, the two are nearly in-
distinguishable, with most differences coming in at higher energies.
Model parameters are U = 1, � = 0.5, η = 0.01, Me = −Mh and
convergence parameters are nm = km = 12 and |l − i|m = 50.

APPENDIX E: PERTURBATION THEORY FOR EXCITON
DISSOCIATION

Here we summarize the perturbation theory (PT) calcu-
lation used to draw the dissociation line in Fig. 3 in the
main text. We begin by estimating the ground-state energies
for the individual polarons. The result for the (static) hole-
polaron is Eh

P = −M2
h/�. To find the electron-polaron’s PT

counterpart, we use the single polaron Green’s function at the

same one-site MA(0) level of approximation [41]: G(k, z) =
[z − εk − �MA(z)]−1, where the full expression for �MA(z)
is shown in Eq. (C4). To lowest nontrivial order in PT, it
becomes �MA ≈ M2

e g0(ω − �). Using this expression to find
the lowest k = 0 pole, we find the polaron ground-state energy
to be

Ee
P(k = 0) = −2t − M2

e√
�(� + 4t )

. (E1)

The PT-predicted lower edge of the continuum is then at
Emin = Ee

P(k = 0) + Eh
P .

To find the bound exciton energy, we proceed similarly,
essentially solving the EOMs to lowest order in the couplings,
and then finding the location of the lowest peak for k = 0.
For simplicity, we only list here the result when Me = −Mh.
We find the lowest allowed exciton energy to be given by
Eexc = z0 + αg0(z0 − �)M2

e , where z0 = −√
U 2 + 4t2 is the

bare exciton energy, and

α = 4G(i,0)
ii (z0)

[
g0(z0 − �) − 2G(i,0)

ii (z0 − �)
]

1 + 2G(i,0)
ii (z0)

[
g0(z0 − �) − 2G(i,0)

ii (z0 − �)
]

The dissociation occurs when Eexc = Emin.
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