Journal of Superconductivity: Incorporating Novel Magnetism, Vol. 15, No. 1, February 2002 (© 2002)

Diluted Magnetic Semiconductors in the Low Carrier
Density Regime

R. N. Bhatt,"23 Mona Berciu,2 Malcolm P. Kennett,? and Xin Wan*

Received 26 November 2001

This paper, based on a presentation at the Spintronics 2001 conference, provides a review of
our studies on II-VI and III-V Mn-doped Diluted Magnetic Semiconductors. We use simple
models appropriate for the low carrier density (insulating) regime, although we believe that
some of the unusual features of the magnetization curves should qualitatively be present at
larger dopings (metallic regime) as well. Positional disorder of the magnetic impurities in-
side the host semiconductor is shown to have observable consequences for the shape of the
magnetization curve. Below the critical temperature the magnetization is spatially inhomoge-
neous, leading to very unusual temperature dependence of the average magnetization as well
as specific heat. Disorder is also found to enhance the ferromagnetic transition temperature.

Unusual spin and charge transport is implied.
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1. INTRODUCTION

Diluted magnetic semiconductors (DMS) are
composed of an inert host semiconductor doped with
both localized spins and carriers (electrons or holes)
that are either itinerant, or localized on a much longer
length scale. In that sense, they belong to the general
family of correlated electron systems, which include
a number of fascinating materials such as cuprates,
manganites, heavy fermions, and other Kondo lattice
systems.

Electronic materials containing local moments
have been studied for some time. What makes the
DMS so fascinating is that they belong to a regime
that has previously been neglected. While the name
diluted magnetic semiconductors implies (correctly)
that the system has only a small percentage of local-
ized spins, they are at the opposite extreme of the
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dilute magnetic alloys such as Fe or Mn in Cu, the
canonical systems involving itinerant fermion and lo-
calized spin degrees of freedom, which have been
studied extensively [1]. In the dilute magnetic metallic
alloys, the low density of spins are a perturbation on
the Fermi liquid representing the nonmagnetic host
metal, so depending on the concentration of the lo-
cal moments, they may be studied in terms of dilute
Kondo systems, or amorphous magnetic systems with
a spin—-spin coupling mediated by the Fermi sea of
conduction electrons (RKKY coupling), which lead
often to spin glass behavior [2].

By contrast, in the regime of interest, the carrier
density in DMS is significantly lower than the (low)
localized moment density, so the spins become an in-
tegral part of the description of the system and its
magnetic phase, rather than a mere perturbation on a
metallic Fermi sea. In that sense, the situation is even
more extreme than e.g., in Kondo lattice and Heavy
Fermion materials, where the two species have com-
parable densities. This large, inverted, ratio of local
moments to carriers is in fact similar to that in the high
T: cuprates. However, unlike the cuprates, the density
of local moments is low and incommensurate with
the lattice, and the carriers and the spins are not in
the same band. As a consequence of the low moment
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density, the exchange between local moments is not
standard direct or superexchange, as in the cuprates,
but is mediated by the carriers, even though their den-
sity is so small. Thus, the DMS are in rather different
region of phase space of electronic materials with lo-
cal moments, than other correlated electron systems.

Despite this difference, most models of diluted
magnetic semiconductors start from the high carrier
density limit, where the carriers may be modeled as
free carriers moving in the conduction or valence
band [3]. This is understandable, since in the high
density limit the carrier kinetic energy is the largest
energy in the problem, and calculations may be done
perturbatively starting from the noninteracting Fermi
gas. However, most of the interesting behavior is seen
at low carrier densities, where the system is insulat-
ing, or not too far from the metal-insulator transition.
Consequently, we have concentrated in this work on
the low density regime, starting from bound carriers,
and moving on to carriers in an impurity band formed
from the bound impurity states.

As we wish to cover the case of insulating be-
havior at arbitrary filling factor i.e., away from the
half filled impurity band case (one carrier per site),
disorder has to be included at the outset. In particu-
lar, we model the system with randomly distributed
dopants, as in the experimental system, since it has
been recognized that the random distribution is es-
sential to understand the magnetic properties of con-
ventional, nonmagnetic doped semiconductors [4,5].
Such models exhibit both insulating and metallic
phases, and with the random distribution of impu-
rity sites included, are in a position to reveal the
effect of disorder in low carrier density systems. In
the case of the predominantly antiferromagnetic cou-
plings between hydrogenic centers in conventional
doped semiconductors, the randomness is found to
suppress magnetic order below measurable temper-
atures (~millikelvin), and possibly to zero. In the
case of DMS, where interactions lead to ferromag-
netic ordering [6,7], in agreement with experimental
findings [8,9], we find that randomness leads to un-
usual behavior in the magnetic response, and effects
of randomness are expected in the transport behavior
as well.

In this paper, we review the results of our ap-
proach to DMS based on both II-VI semiconductors
(like CdTe or ZnSe), and on III-V semiconductors
(such as GaAs or GaP; for a review of properties
of ferromagnetic III-V semiconductors, see Ref. [9]),
and compare the two families of DMS systems. The
paper is organized as follows. In Section 2 we briefly
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review the properties of conventional (insulating)
ferromagnets. The results presented serve as a refer-
ence with which to contrast the results obtained in the
rest of the paper. Section 3 addresses the [I-VI based
DMS, while Section 4 deals with III-V DMS. In each
case, we introduce the Hamiltonians we use to model
these systems. Results obtained within mean-field
approximation (MFA) and with Monte Carlo (MC)
simulations are presented. The effect of positional dis-
order of the Mn dopants is studied, as are the similar-
ities and differences between 1I-VI and I1I-V DMS.
Finally, Section 5 summarizes our results and conclu-
sions. It also includes a discussion of important issues
such as robustness of models, relevance of disorder on
spin scattering, and key experiments which could help
provide a better understanding of these materials.

2. CONVENTIONAL FERROMAGNETIC
SYSTEMS

A typical model of a uniform ferromagnet con-
sists of a collection of identical magnetic spins of mag-
nitude S, placed on an ordered Bravais lattice. While
the generic case may be anisotropic in spin space due
to a variety of reasons (spin-orbit coupling, crystal
fields etc.) we consider here the simplest isotropic
case where the spin interactions are well described
by a Heisenberg Hamiltonian

H=— Jijgi'§j_H'ZgMB§i~ (1)

Because of translational invariance, the exghange
integral J;; depends only on the distance R; — R;
between spins. In insulating materials, this depen-
dence is due to overlap between the electronic orbitals
involved in creating the spin S (through Hund’s rule),
leading to an exponential decay of J;; with increasing
distance. In typical magnetic atoms, these orbitals are
of d or f type, and they are localized within ~1-2 A of
the nucleus. As a result, it is customary to restrict the
first sumin Eq. (1) to only nearest-neighbor spins. The
external magneticfield H = Hé, breaks the rotational
symmetry, leading to the appearance of a nonvanish-
ing expectation value (S7) at each site. Translational
invariance implies that (S7) = (S) is independent of
the position R; of the spin.

While an exact solution for the Heisenberg
Hamiltonian (1) is known only in one dimension,
it has been found that the Weiss (mean-field) ap-
proximation provides a qualitatively good under-
standing of the properties of these systems. The
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mean-field factorization S’,- . S’j — §,— . (S’,-) + (S’,—) .
Si—(Si) - (S)) = (S)(5F + 5%) — (S)* allows for a so-
lution of the problem in terms of an effective magnetic
field H(i) = H+ J(S)/(gus), where J = 3, ; Ji;. (If
only nearest-neighbor interactions are kept, J = zJy,
where z is the coordination number of the Bravais
lattice and Jo; is the exchange integral for nearest-
neighbor spins.) In the absence of an external mag-
netic field, a nonvanishing solution for (S) is found
for T < Tc = JS(S + 1)/3kg. In other words, the sys-
tem is ferromagnetically aligned below the critical
temperature 7¢, and the spontaneous magnetization
(M) = gug(S?) increases rapidly (Fig. 1) with de-
creasing temperature and is already close to the sat-
uration value My = gugS below T < 0.57¢. Concur-
rently, the specific heat has a peaked structure around
Tc and drops rapidly to zero for T < 0.57¢ reflecting
the fact that the only accessible degrees of freedom
for low T are the long-wavelength (collective) spin-
wave excitations which have a restricted phase space
(see Fig. 2) [10].

It is well-known that MFAs overestimate the
strength of the correlations, leading to rather high esti-
mates for the Curie temperatures 7¢. Detailed studies
of these Hamiltonians with Monte Carlo simulations,
which properly account for the effects of thermal fluc-
tuations, find quantitative changes of up to a factor of
2 in the value of 7c. However, as suggested in Fig. 2,
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Fig. 1. Dependence of reduced magnetization M/My upon reduced
temperature 7'/Tc. Curves are slightly different for different values
of the quantum spin S, however they all have a convex upward
shape. The solid circles represent typical experimental data for Gd
(S~ %), Fe (S~ 1),and Ni (S =~ %) (From Ref. [10]).
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Fig. 2. Schematic comparison of typical experimental measure-
ments of temperature dependence of magnetization, specific heat
and susceptibility for a Heisenberg ferromagnet (such as EuS) with
the predictions of the Weiss mean-field theory. Note that the curve
for inverse susceptibility 1/x7 is shown only for 7 > T¢ (From
Ref. [10]).

the qualitative features of the magnetization, specific
heat, and susceptibility curves remain as in the Weiss
mean-field treatment, in good agreement with exper-
imental measurements.

3. FERROMAGNETIC SYSTEMS: II-VI DMS
3.1. The Model

The II-VI DMS are based on semiconductors
AB, where A is a group-Il element and Bis a group-VI
element (such as CdTe or ZnSe). In the II-VI DMS,
some of the divalent sites (Cd/Zn) are substituted by
a magnetic element, typically Mn. This fraction is de-
noted by x, so the DMS we consider is A;_,Mn,B.
Mn is also a group-II element, but in addition it has a
half-filled 3d shell, with a total spin given by Hund’s
rule: § = 5/2.In the absence of other types of dopants,
the system A;_,Mn,B is an insulator which exhibits
antiferromagnetic (AFM) tendencies at low tempera-
tures. This is seen, for instance, from measurements of
the susceptibility which is found to depend on temper-
ature as x(7T) ~ 1/(T + IN), with a Neel temperature
of a few kelvin [8,11]. The origin of this AFM ten-
dency is the (expected) antiferromagnetic exchange
between the Mn spins. However, for low doping con-
centrations x, the average distance between Mn spins
is large and this AFM direct exchange is rather small.

When a low density of charged dopants, such as
group-V Phosphorus (P) substituting for the group-VI
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element, is introduced in the system, each of them
binds a hole (or electron) in a shallow hydrogenic 1s
state ¢(F) ~ exp(—r/ag), characterized by a Bohr ra-
dius ag ~ 10-20 A. Exchange interactions arise be-
tween the spins of these charge carriers and the Mn
spins, and are described by the Hamiltonian [6].

H=> "I, R))S: - §;. (2)
ij

Here, S ; is the spin of the Mn at position ﬁj and §;
is the spin of the electron/hole centered at 7;. The
exchange interaction J(7;, Rj) is dependent on the
overlap between the orbital ¢(r —7;) of the charge
carrier and the orbitals ¥4(7 — R;) of the 3d electrons
responsible for the Mn spin. Since these 3d orbitals
are localized on a scale of a few A around the Mn
nucleus, the exchange is proportional to the carrier
charge density at the Mn site, i.e.

Ji, R)) = Jolp(R; — ;)2 = Jg e 2mRillas - (3)

where Jy characterizes the strength of the exchange.
Typically, for electrons Jy < 0, while for holes Jy > 0.
However, since in the following we treat the spins as
classical variables, the sign is irrelevant. For specificity,
in the rest of the paper we assume Jy > 0 correspond-
ing to holes as charge carriers.

The Hamiltonian (2) neglects the direct AFM in-
teractions between the Mn spins. For low values of
the fraction x, it can be simply accounted for in the
following manner. For Mn spins which are very close
to one another (such as nearest neighbors), the direct
AFM exchange is the dominant (large) interaction,
and leads to the formation of a singlet state. This sin-
glet becomes inert as far as magnetic interactions are
concerned. For Mn spins which are fairly far apart
from other Mn spins, the dominant magnetic interac-
tion is the exchange with the charge carrier spins. As a
result, to first order the Hamiltonian (2) accounts for
both types of interactions if we restrict the summation
over the Mn spins to only those Mn spins which are
not part of a spin-singlet. Atlow x, thisincludes alarge
majority of Mn spins. If the fraction x of Mn becomes
too large, both types of interactions will be of compa-
rable size for all the Mn spins, and therefore this sepa-
ration is no longer possible. In this case, the frustration
imposed by the competing exchanges leads to the ap-
pearance of a spin glass state, which has been observed
experimentally for x > 0.2 [12]. In the following, we
restrict ourselves to the low x (x < 0.1) limit.

Simple thermodynamic considerations show
that, qualitatively, at a temperature kg T < J(r) (see
Eq. (3)), all Mn spins within distance ry ~ (ag/2)

Bhatt, Berciu, Kennett, and Wan

Fig. 3. Schematic drawing of the percolation limit for a disordered
collection of BMPs. As the temperature is lowered, the size of each
BMP increases and a percolated network appears below 7c. Just
below 7c, only a small fraction of the spins belong to the percolated
network and sustain the bulk magnetization of the sample. The
large majority of spinsis outside the percolated network and behave
like quasi-free (noninteracting) spins.

In(Jo/ks T) of a dopant order their spins antiferro-
magnetically with respect to the dopant hole spin. As
a result, a region with a large magnetization (from
all the parallel polarized Mn spins) appears near the
dopant. This is known as a Bound Magnetic Polaron
(BMP) [8], whose radius rr (see above) increases log-
arithmically with decreasing temperature. As a re-
sult, one expects that long-range ferromagnetic order
appears in the system for temperatures low enough
that a continuous percolating network of BMPs is
formed (as shown schematically in Fig. 3), provided
that nearby BMPs prefer to orient ferromagnetically
with respect to one another. At first sight, this seems
to not be the case, since direct exchange between the
charge carriers localized in hydrogenic orbitals has
an AFM sign [4,5,13]. However, this AFM coupling
is overwhelmed by effectively ferromagnetic interac-
tions between BMPs coming in part from Mn spins
in between the polarons which favor ferromagnetic
alignment of Mn spins [6] and partly from the modi-
fication of the effective direct exchange as a result of
the local field due to the polarized Mn [7].

These mechanisms favoring parallel orientation
of the BMPs at low temperatures are rather weak,
and as a result the Curie temperature below which
long-range ferromagnetism is observed in these sys-
tems is very low, to our knowledge below 5 K for all
II-VI DMS studied so far. Moreover, as the tran-
sition is of a percolation type, and the percolation
fraction is ~20% for three dimensions, this implies
that just below 7¢ about 80% of the Mn spins do
not participate in the ferromagnetism. These are the
Mn spins which are outside the percolated cluster,
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i.e., far from the charged dopants (see Fig. 3). They
are very weakly interacting (essentially disordered)
unless the temperature becomes so low that a nearby
BMPs grows large enough to include them. This re-
sultsin a very unusual FM phase, in which a substantial
part of the spin entropy survives down to very low 7.

3.2. Monte Carlo Simulations

We performed MC simulations on the
Hamiltonian (2), to study this unusual FM phase,
treating both Mn and carrier spins as classical
variables [14]. This appears to be a reasonable ap-
proximation, since § = 5/2 is a large spin and the Mn
spins dominate the magnetic response. Simulations
were carried out for zinc-blende lattices with lattice
constant a =5 A, for Mn concentration x = 0.001,
dopant density ng = 10'8 cm™3 and ag = 20 A. The
exchange Jy defines the unit of energy. With these
parameters, the Mn concentration nyy, = 4x/a’ is 32
times the dopant concentration. Nevertheless, the
magnetic coupling is mediated by the latter because
of the large Bohr radius, as required for the polaron
picture to hold.

The magnetization curves obtained have un-
usual, concave upward shapes (see Fig. 4, left panel),
very unlike the typical magnetization curve of Fig. 1.
For these parameters, the critical temperature Tc =
0.014J, is found using finite size scaling [14]. We find
that the magnetization reaches its saturation value
only at exponentially small temperatures, reflecting
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Fig. 4. Magnetization per Mn spin as a function of temperature, in a
1I-VI DMS, for classical/discrete spin model (left/right panel). Re-
sults are shown for samples with N = 256, 864, and 2048 Mn spins.
Finite size scaling analysis finds a critical temperature 7c = 0.014Jy
[14]. The magnetization curves are very unlike the conventional fer-
romagnet magnetization curve shown in Fig. 1.
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Fig. 5. Specific heat per Mn spin as a function of temperature, for
classical (empty squares) and discrete (full squares) spin models.
Systems with N = 2048 Mn spins were used in both cases. While the
discrete model recaptures the proper limit Cy — 0 as T — 0, the
peak in the specific heat is well below the critical temperature (7c =
0.014Jy for these parameters), unlike in conventional ferromagnets,
where the peak in the specific heat is at Tc (see Fig. 2).

the existence of the quasi-free Mn spins outside the
percolated (magnetically ordered) region.

The specific heat of the classical Heisenberg
model has the unphysical limit Gy — Nkg as T — 0
(empty squares in Fig. 5). While this agrees with the
equipartition theorem, it implies that quantum me-
chanics (with discrete energy levels) is needed to cap-
ture the correct limit Gy — 0 as 7 — 0. One way to
mimic the discretization, but avoid the complexities
of the quantum MC treatment, is to use a discrete
(classical) vector model, in which each Mn spin can
only be oriented along one of the six (100) directions.
An efficient MC method for this discrete model is de-
scribed in Ref. [14]. While the magnetization curves
are very similar to the ones obtained in the continuous
spin Heisenberg model (see Fig. 4), the specific heat
results are very different (see Fig. 5). As expected, for
the discrete model Cy — 0 as T — 0. However, un-
like in the case of a typical FM, the peak in Cy is not
near Tc, but at temperatures well below Tc. This re-
flects the residual entropy of the free Mn spins outside
the percolated region.

3.3. Effect of Disorder

In II-VIDMS there are two sources of positional
disorder: disorder in the positions of the Mn spins and
disorder in the position of the charged dopants. In the
limit when there are many Mn ions per dopant, the
Mn spin disorder is not expected to have a signifi-
cant effect on the magnetization curves, or the critical
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temperature. The reason is that at the very low tem-
peratures where percolation appears, the radius of
each BMP is significantly larger than ag, favoring in-
teractions with a large number of Mn spins. Disorder
in the Mn positions will lead to some fluctuations in
the average number of Mn spins found in each BMP,
but this should have a relatively small effect.

On the other hand, disorder in the position of the
charged carriers (centers of the BMPs) has a large ef-
fect on the critical temperatures. As seen from Fig. 3,
disorder in the positions of the BMPs facilitates the
appearance of a large percolated cluster for smaller
BMPs sizes (larger temperatures), since only a sub-
set of the BMPs must percolate in order for ferro-
magnetic order to appear in the system. On the other
hand, the ordered BMP lattice only percolates when
each and every BMP is included. This obviously hap-
pens when a larger fraction of the space is filled by
BMPs, i.e., at a lower temperature. However, we em-
phasize again that even for the ordered BMP lattice,
a significant volume containing a large fraction of the
Mn spins is still outside the percolated volume (in the
interstitial spaces) and therefore the phenomenology
related to the existence of weakly interacting spins
down to exponentially low temperatures is still valid.

We have verified, using MC simulations, that the
critical temperature of a system in which the charge
carriers are placed in an ordered superlattice is lower
than that of a sample with random positions of the
charge carriers, when all other parameters are iden-
tical. For the case investigated, the relative increase
of T¢ with disorder was 50% [15]. However, this rel-
ative increase is expected to depend on the various
parameters of the problem.

4. FERROMAGNETIC SYSTEMS COUPLED
TO FERMIONS: III-V DMS

4.1. Introduction

When Mn is doped in a III-V semiconductor,
such as GaAs, the major difference with respect to
the II-VI DMS is that the Mn atom provides both the
S =5/2 spin and the dopant charge carrier (a hole,
since divalent Mn substitutes for trivalent Ga). While
this implies nominally equal concentrations of holes
and Mn spins, experimentally it is found that the
hole concentration is only p = 10-30% of the Mn
concentration [9,16]. The compensation process(es)
responsible for the removal of such a large fraction
(~70-90%) of the holes from the carrier band
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are not fully understood, but it is believed that an
important role is played by As antisite defects. Such
defects are created when group-V As substitutes for
group-III Ga, and removes two holes introduced by
Mn impurities, thus effectively decreasing the hole
concentration. Compensation is responsible not only
for the substantial decrease of the hole concentration,
but also leads to the appearance of charged com-
pensation centers (e.g. As”* for As antisites). The
Coulomb potential created by these charged com-
pensation centers may also play a role in the physics
of these systems, as we discuss in the following.

As in the (II,Mn) VI systems, the main magnetic
interaction in the (III,Mn)V DMS is the exchange be-
tween the Mn spins and the hole spins, which is known
to be AFM [9]. Assuming, again, very sharply peaked
Mn 3d orbitals, this exchange is proportional to the
probability of finding the charge carrier at the Mn site.
This probability is extracted from the wave-functions
of the orbitals occupied by the hole charge carriers.
The appropriate framework to describe the hole states
depends on their concentration. At low hole concen-
trations, screening processes are ineffective. The un-
screened Coulomb potentials of the Mn dopants are
responsible for the splitting of hydrogen-like impurity
levels from the top of the valence band, and the holes
occupy these impurity states. In the limit of high hole
concentrations when the carrier kinetic energy is the
largest energy in the problem, the Coulomb potential
of the Mn dopants effectively gets reduced because
of screening. As a result, the holes occupy a Fermi
sea at the top of the valence band. Qualitatively, it is
apparent that the two situations could lead to quite
different physics. Holes occupying Bloch states in the
valence band are found with equal probability any-
where inside the host semiconductor, and therefore
one expects the system to be rather homogeneous.
On the other hand, holes occupying impurity states
are found with high probability near the Mn sites. As
a result, we expect a rather inhomogeneous distribu-
tion of the holes in the host semiconductor, and the
positional disorder of the Mn dopants may play an im-
portant role, since it defines the length-scale for these
inhomogeneities.

Ga;_,Mn,As has a metal-insulator transition
for x ~ 0.03 and shows reentrant insulating behav-
ior for x > 0.07 [9]. In the insulating regimes, the
low-temperature conductivity is consistent with Mott
long-range variable hopping [16,17], suggesting the
existence of impurity-like levels. Even for the most
metallic sample (x = 0.053) the screening length (/ ~
10 A) as evaluated from the Thomas—Fermi theory is
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of comparable size, not much smaller than the Bohr
radius of the impurity level (ag ~ 8 A) [18,19].

4.2. The Model

Motivated by these observations, we have at-
tempted to understand the low x regime within a
model based on the existence of impurity hydrogen-
like orbitals at each Mn site. While this is similar to our
approach to the II-VI DMS systems, one difference is
that since the number of holes is smaller than the num-
ber of Mn, there must be a mechanism to allow the
holes to “choose” the Mn dopants near which to stay.
Such a mechanism is naturally provided by hopping
processes facilitated by the overlap between impurity
wave-functions centered at different Mn sites. There-
fore, the Hamiltonian describing such a system is of
the form

M= tijclcjio+ Y [uli)el,ciq + Uniyni]
ij i
+ D TS SG) + Y K SG) - S(j)
ij ij
o + - .
— g,uBHXi: Ecl-ac,-a — g/J,BHXi: S{). 4)

Here, i indexes different Mn positions R;, and c

the creation operator for a hole with spin o in the
impurity level centered at R;, while S; is the spin of
the corresponding Mn dopant.

The first line in Eq. (4) is the Hamiltonian of
the charge carriers. The first term describes hop-
ping of holes between impurity levels. For sim-
plicity, we assume again 1s impurity states with
¢(r) = exp(—r/ap). In fact, the hole impurity wave-
function is more complicated, because of the band-
structure of the valence band from which it splits
(for details, see Ref. [18]). For the hopping inte-
gral we use the simple parameterization ;; = 2(1 +
r/ag) exp(—r/ag) Ry, where r = |R; — R;|, appropri-
ate for hopping between two isolated 1s impurities
which are not too close to one another [20]. For
Mn doped into GaAs, the Bohr radius is ag = 7.8 A
and the binding energy which defines the Rydberg is
1 Ry = 110 meV [18,19]. We have investigated other
parameterizations for the hopping matrix #(r) else-
where [21], and found that while they lead to quanti-
tative changes, qualitatively the results are similar.

The second term describes an on-site poten-
tial u(i) due to the Coulomb potential of the other
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Mn impurities, as well as other nearby charged
compensation centers. An on-site Coulomb repul-
sion U of the Hubbard type may be added to de-
scribe the electron—electron repulsion between elec-
trons occupying the same impurity orbitals. For
isolated 1s impurities, U &~ 1 Ry. However, depend-
ing on the effectiveness of screening, the electron—
electron interactions may be longer-range. A fully
self-consistent treatment of this problem should in-
volve a proper description of the screening pro-
cesses, and would allow a detailed computation
of the strength of the hopping matrix, the on-site
Coulomb potential and the electron—electron inter-
actions. However, since the full self-consistent de-
scription is extremely difficult to achieve, especially
as details about compensation processes are still not
clarified, we use the simplified assumptions described
above. We believe that they should provide a good
qualitative description of the properties of these com-
pounds, and with proper fitting of various energy
and length scales may even lead to a quantitative
description.

The second line of Hamiltonian (4) describes the
AFM exchange between the Mn spin S(j) and the
hole spin §; = 3¢/ ,Gascip (7 are the Pauli spin ma-
trices). As in II-VI DMS, the AFM exchange is
proportional to the probability of finding the hole
trapped at R; near the Mn spin at R,, so Jij =
J exp(—2|R; — R |/ap). Based on calculations [18] of
the isolated Mn 1mpur1ty in GaAs, we estimate the
exchange coupling between a hole and the trapping
Mn (R; = R, i) tobe J =15 meV.

The second term describes the direct Mn—Mn ex-
change in the semiconductor host, which is expected
to be short range, and consequently not important
at low x when Mn are a few sites away from each
other. We have therefore omitted this term (i.e., set
K;j = 0); however, for higher concentrations this may
be important. Finally, the third line in Hamiltonian (4)
describes the interaction with an external magnetic
field.

Given the large number of terms in the
Hamiltonian, it is useful to try to understand the ef-
fect of each. To begin with, we neglect the random
on-site potential (u(i) = 0), the electron—electron in-
teraction (U = 0), the direct Mn—Mn AFM interac-
tions (K;; = 0) and turn off the external magnetic field
(H = 0) (we will discuss the effects of these various
terms later on). As a result, the Hamiltonian contains
only its two main terms (#;; and J;;), describing the dy-
namics of the charge carriers and the AFM interaction
between the Mn spins and the charge carrier spins.
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4.3. Similarities and Differences Between II-VI
and ITII-V DMS

We investigated the Hamiltonian (4) using both
the MFA [19,21] and MC simulations [22]. Typical
magnetization curves obtained with MC methods for
a Mn concentration x = 0.01 and hole concentrations
p = 10 and 30% are shown in Fig. 6. The correspond-
ing curves obtained using the MFA for the similar pa-
rameters are shown in Fig. 7. While there are substan-
tial quantitative differences between the two, these
are easily understandable. The long tail of the MC
curves at high T are due to finite sizes of the sam-
ples studied; these disappear as the sample size is in-
creased. On the other hand, the critical temperature
(T¢) predicted by MFT are significantly higher than
those obtained by MC simulations (as would be ex-
pected). Part of the difference in 7¢ between the two
methods is actually due to the fact that the Mn spins
in the MC simulations are taken to be classical vari-
ables, and quantum operators in the MFA. If we use
classical Mn spins in MFA, we find 7¢ reduced by a
factor of ~2. The remaining reduction is presumably
due to the usual neglect of fluctuations in MFA, which
is properly captured in MC simulations.

The striking feature, common to both results, is
that the magnetization curves have unusual shapes—
linear or concave upward. This is qualitatively similar
to those found for the II-VI DMS (Fig. 4), and what
has been seen in experiments [16,23], but very differ-
ent from the convex upward M(T) of conventional
ferromagnets (Fig. 1). Again, as in the II-VI, the

1.0 ; , ; . . , :
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Fig. 6. Magnetization per Mn spin as a function of temperature, in
a III-V DMS, using Monte Carlo simulations [22]. Curves corre-
spond to x = 0.01, and relative hole to Mn concentrations p = 10
and 30%.
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Fig. 7. Average magnetization of the Mn spin (Smn > 0) and of
the charge carrier spins s, < 0) as a function of temperature, in a
III-V DMS. Curves correspond to x = 0.0093 and p = 10 (full line)
and 30% (dotted line), and were obtained using the mean-field
approximation [21].

magnetization does not reach its saturation value un-
til very low temperatures. Concurrently, the specific
heat curves also exhibit a peak at temperatures much
lower than the critical temperature, reflecting the en-
tropy of the disordered spins present in the system
down to these low temperatures [21].

By looking at the magnetization profile around
the Tc, long-range ferromagnetism in the disordered
sample of III-V DMS is seen to appear when a per-
colated cluster of polarized Mn spins is formed. How-
ever, unlike in the spin-only model based on isolated
hydrogenic centers used for II-VI DMS in the previ-
ous section, the holes are delocalized within this clus-
ter for the parameters appropriate for the III-V based
DMS. Since the holes can more effectively minimize
their kinetic energy when maintaining the direction
of their spin during hopping, this delocalization of the
holes within the percolated cluster provides a very
effective mechanism for alignment of all Mn spins
within the cluster in the same direction. This kinetic-
induced alignment mechanism is much more effec-
tive than mechanisms of alignment of nearby BMPs
in insulating II-VI DMS, suggesting higher critical
temperatures in this case. Other reasons for enhance-
ment of critical temperatures in III-V DMS include
the peaking of the impurity wave-functions at the Mn
sites in this case where Mn is also the dopant, and the
ability of carriers in the compensated case to choose
states with wave-functions peaked in the regions with
higher-than-average Mn concentrations—the higher
probability of finding the holes in these regions leads
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to enhanced effective interactions with the Mn spins.
When all these factors are included, we find indeed
that the striking differences in critical temperatures,
by two orders of magnitude, in the two systems can
be comfortably explained, at least within MFA.

4.4. Effect of Disorder

Within the MFA, positional disorder in the Mn
spins for III-V DMS leads to a significant increase of
the critical temperature. Mn are the charged dopants
in this case, so the situation again appears to be
similar to that in II-VI DMS. Typical magnetization
curves obtained using MFA are shown in Fig. 8, for
a doping x = 0.0093 and p = 10%. In order of in-
creasing 7Tc, the four curves correspond to increas-
ing disorder in the positions of the Mn impurities. We
start with a fully ordered, simple cubic superlattice
of Mn impurities inside the host semiconductor (for
this concentration, the superlattice constant is equal
to three lattice constants of the underlying Ga FCC
sublattice). The corresponding average spins of the
Mn and charge carriers are shown by dashed lines
in Fig. 8. Then, we introduce positional disorder of
the Mn ions on the underlying Ga FCC sublattice in
varying amounts—(i) low-disorder where Mn spins
are randomly placed on any of the nearest-neighbor
sites of the original superlattice sites; (ii) moderate
disorder—where the Mn spins are allowed to occupy
any sites on the Ga sublattice, as long as the distance
between any two Mn is larger than two lattice con-

Fig. 8. The average Mn spin Sy and average spin per hole sy
for doping concentration x = 0.00926 and p = 10%. In increasing
order of 7c, the curves correspond to ordered, weakly disordered,
moderately disordered, and completely random distributions of Mn
(see text).
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stants; and (iii) completely random positions of the
Mn spins on the Ga FCC sublattice of the host semi-
conductor.

In a fully ordered III-V DMS, below 7¢ each
Mn spin is equally polarized, since translational
invariance implies that the holes are equally dis-
tributed among the various Mn sites and therefore
create the same effective magnetic field for each Mn
spin. (In this respect the ordered lattice for III-V is
different from the situation encountered for the or-
dered superlattice of charged dopants in the II-VI
DMS. In the II-VI, below T¢ the Mn spins inside
the BMPs are strongly polarized, while the Mn spins
outside the BMPs are practically unpolarized.) The
reason why 7c is larger in a disordered III-V DMS
than an ordered one, is that the hole wave-functions
are pulled-in the regions with higher-than-average Mn
concentrations, where they can more effectively min-
imize their total energy. The increased probability of
finding the holes in this smaller volume occupied by
the cluster leads to effectively larger couplings Jeg
of the Mn spins in the cluster [21], and therefore in-
creased critical temperatures. In other words, in the
disordered III-V DMS the holes only need to polarize
asmaller fraction of the Mn spins in the system and get
polarized in their own term. In an ordered Mn sam-
ple, the holes polarize equally a/l the Mn spins in the
system, and this can only happen at rather low temper-
atures, given the small number of holes as compared
with the number of Mn spins. While MFA shows a
strong dependence of 7¢ on disorder, this is likely to
be modified once fluctuation effects left out in MFA
are included, as in a MC simulation.

The unusual shape of the magnetization curves
is a consequence of the relatively small number of
charge carriers as compared to the number of Mn
spins. In a disordered system, we can identify two
types of Mn spins: strongly interacting Mn spins from
the percolated cluster, which polarize at high temper-
atures and lead to the ferromagnetic transition at 7,
and weakly interacting Mn spins from the regions out-
side the percolated cluster. Since these outside regions
have low-hole density in our model, the effective cou-
pling of their Mn spins (which is proportional to the
probability of finding holes nearby) is rather small.
Consequently, these spins do not polarize unless the
temperature is comparable in size to their effective
coupling. We have used this picture to obtain a sim-
plified but fairly accurate description of the magnetic
and thermodynamic properties of the DMS based on
a two-component model [24]. We start from a his-
togram of the effective couplings Jg of all the Mn



80

0.06 — T | v T T T

0.051 4

o
]
=
T
|

P[log(pi)]

0.02F i
0.01F -
0.00 R S N L"l

104 107 107 10" 10° 10!

Fig. 9. Histogram of effective couplings p; = Jeti(i)/J of different
Mn spins at kg 7/J = 0.01, for x = 0.01 and relative hole to Mn
concentration p = 10%. This distribution was found using Monte
Carlo simulations [22].

spins, obtained by averaging over many realizations
of disorder. Such a histogram of J.¢/J obtained using
MC simulations for x = 0.01 and p = 10% is shown
in Fig. 9. As can be seen, it is a very wide distribu-
tion, from very large Jeg ~ J for strongly interacting
Mn spins, to extremely small Jegr/J ~ 1073 values for
weakly interacting Mn spins. Histograms obtained
within the MFA have very similar shapes, except that
their width is even larger [21].

For such wide distributions, at any given temper-
ature kg T, we divide the spins into weakly/strongly
interacting categories, depending of whether their
effective coupling Jeg is smaller/larger than ykgT.
Then, we replace the complex distribution of cou-
plings shown in Fig. 9 by two §-functions representing
the two spin components. The values of the nominal
couplings J; and J; of the weakly/strongly interacting
spin components are simply the average of all the cou-
plings of weakly/strongly interacting spins. The con-
stant y is found from a fit of, for instance, the magneti-
zation curve provided by this simplified model. Other
thermodynamic quantities, such as susceptibility and
specific heat are then shown to be quite well described
by this simple model [24]. In contrast, we have verified
that replacing all the couplings by a single coupling
corresponding to the average over the entire distri-
bution leads to curves very different than the ones
obtained with the original distribution. We believe
this simplified model could provide a simple tool for
interpretation of experimental curves. So far, most at-
tempts have been to try to fit the magnetization curves
(for instance) with only one coupling. While this may
recapture part of the curve near and below T¢ [9], it
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turns out that it only accounts for a rather small per-
centage of the total number of Mn spins expected to
be in the system. This suggests that a second com-
ponent is missing. In fact, fits in terms of two compo-
nents, one ferromagnetic and one paramagnetic, have
already been performed in order to explain the shapes
of the measured M(H, T) curves [25].

In a conventional ferromagnet, an external mag-
netic field will lead to a fast increase of the magneti-
zation from its value in the absence of the field, to the
saturation value My = NgugsS, where N is the con-
centration of spins S in the system. A hysteresis curve
associated with the existence of ferromagnetism be-
low T¢ is also observed. In III-V DMS samples, the
hysteresis curves are clearly observed as well. How-
ever, even at rather large fields H, M(H) does not
saturate, but continues to increase with increasing
magnetic field. This feature has been attributed to
a “paramagnetic” component [25], and it obviously
corresponds to the weakly interacting component of
nearly free spins of our simplified two-component
model. In fact, we have generated M(H, T) curves
within the MFA, and these features are clearly
present (see Fig. 10), in qualitative agreement with
measurements.

4.5. Effect of Other Interactions

We have investigated in detail the effect of the
on-site disorder term u(i ) and of the on-site Coulomb
repulsion U elsewhere [21]. The on-site disorder is

T
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Fig. 10. Hysteresis curves obtained within the mean-field approx-
imation for one disorder realization corresponding to a Mn con-
centration x = 0.03 and hole to Mn ratio p = 10% (corresponding
to a critical temperature kg 7c/J = 0.85). Averages over several
disorder realizations are needed to obtain smooth curves.
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due to the Coulomb potential created by the charge
impurities responsible for compensation (such as
As™ antisites). We have considered two extreme pos-
sibilities. In the first case, we assume that these poten-
tials are completely uncorrelated, and model them
by choosing random values for u(i) within an inter-
val [-W, W]. The estimate W ~ 1 Ry is obtained fol-
lowing standard considerations for doped semicon-
ductors [26]. In the second case, we attempt a simple
modeling of the effect of As antisites. We choose ran-
dom positions for these As defects on the Ga sublat-
tice and identify their two nearest neighbor Mn sites.
Each such As impurity has an effective charge +2e,
and therefore will contribute an on-site Coulomb po-
tential +2¢%/er at a Mn impurity site which is at a
distance r from it. However, since the Mn ions also
have effective ionic charge —e, the As potential is
screened (partially compensated) by the potential of
the Mn impurities nearby it. Therefore, we assume
that each As antisite only contributes to the on-site
potential u(i) of its two nearest Mn neighbors, with
the contribution to the other Mn sites being screened
out by the contribution of these two nearest Mn sites.
The presence of the charged impurities responsible
for compensation increases the amount of disorder
(inhomogeneity) in the system, since the holes will
avoid the regions were these defects are located. Thus,
one might assume that u(i) # 0 will lead to a further
increase of 7c. However, in fact we find a decrease
of T¢ for these models of compensation, especially
for the second model [21]. This is a consequence of
the fact that due to the presence of nearby As an-
tisites, holes now avoid some Mn sites that would
otherwise be part of dense clusters. Thus, the sys-
tem effectively moves toward the more homogeneous
regime, with lower 7c. An opposite effect is provided
by the on-site electron—electron Coulomb repulsion,
the presence of which was found to lead to an in-
crease of T, since it aids in the splitting of the up and
down spin bands, favoring spin polarization at higher
temperatures [21].

A quantitative determination of the effects of
these types of interactions will have to wait until more
details are known about the compensation processes.
A theory that properly and self-consistently describes
the screening processes is also necessary.

5. CONCLUDING REMARKS

In this paper, we have discussed the behavior of
a model of DMS in the low density regime, based
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on a simple tight-binding hydrogenic model of the
impurity band. Such a model takes into account, at
the very outset, the inherent disorder present in the
experimental system, namely the random position of
the dopants. Other models [3] start from an electron
gas exhibiting the translational symmetry of the host
lattice and ignore the disorder of the alloy system.
While the latter may be the appropriate starting point
for the high carrier density regime, it does not al-
low for a metal-insulator transition, and consequently
misses the unusual transport and magnetic behavior
associated even with metallic systems in the vicinity
of such a transition. In contrast, our model starts from
the low density insulating side, and at least for con-
ventional doped semiconductors, has been found to
be applicable to densities up to a factor of 3 above
the metal-insulator transition [27].

For the case of II-VI DMS, we have restricted
ourselves to low densities corresponding to the in-
sulating phase, for the case of a half-filled band i.e.,
no compensation. In this limit, a spin-only descrip-
tion of the bound carriers is appropriate. (We note,
however, that such a spin-only description has been
very successful for the low-temperature thermody-
namic and magnetic properties in conventional doped
semiconductors, both uncompensated and compen-
sated, for densities up to the metal-insulator transi-
tion [5] and even somewhat into the metallic phase
[28,29] provided an itinerant Fermi liquid-like second
component is added to the description of these highly
disordered systems.) For III-V DMS, where large
compensation is found to be experimentally present,
presumably due to antisite defects, we have adopted a
full fermionic description of the carriers. Such a model
allows for both an insulating and a metallic phase.
However, as explained in the body of the paper, the
model we have studied is simplified, and neglects sev-
eral terms in the full many-body Hamiltonian describ-
ing these complicated materials.

Despite the rather different model descriptions
(spin vs. fermion) for the two cases, as well as methods
of solution (Monte Carlo vs. mean-field approach),
we find a remarkable similarity in the qualitative
predictions concerning the magnetic and thermody-
namic properties. Most striking are the unusual mag-
netization curves M(T), with linear to concave up-
wards shape over much of the ferromagnetic region,
in striking contrast to conventional uniform ferro-
magnets. This appears to be a combined result of
low carrier density and strong disorder. As a con-
sequence, the ferromagnetic transition has percola-
tion like characteristics, with only a small fraction
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of the material carrying the bulk of the ferromag-
netism around 7¢. The remaining portion of the ma-
terial orders gradually as the temperature is lowered,
and unlike in most conventional ferromagnets, satu-
ration magnetization is not reached until well below
Tc. Such an inhomogeneous magnetization results in
unusual susceptibility and specific heat in the low tem-
perature ordered phase, and would imply substantial
inhomogeneities in the local field at Mn sites, which
could be probed, e.g., by NMR measurements. Un-
usual hysteresis curves in M(H) below T are also
implied, with saturation occurring well beyond where
the loops close. We have checked for the case of
the III-V DMS that within a simple impurity band
description, these effects are robust [21]. However,
as the carrier density is increased (by reducing the
compensation, or raising the Mn concentration), the
anomalous shape of M(T) becomes less prominent:
M(T) assumes the convex upward shape of conven-
tional uniform ferromagnets, and the ensuing unusual
properties discussed above gradually fade away.

In contrast to the qualitative shape of the magne-
tization curves and the ensuing thermodynamic and
magnetic behavior, the actual transition temperatures
of the two systems are known to be rather different
(from a few degrees kelvin [8] for the II-VI DMS,
to several hundreds [9,16,30,31] for the III-V DMS).
Certainly one reason for this difference is the in-
creased weight of the hole wave-function at the cation
(II/IT) site where the Mn spin resides in the III-V
semiconductors relative to the II-VI semiconductors,
as may be seen from a tight-binding description of
valence bands [32] of zinc-blende structure semicon-
ductors. However, an additional reason within an im-
purity band description of carriers, is that in III-V
DMS the Mn sites are centers of the impurity wave-
functions, while for II-VI DMS, the carrier impu-
rity sites are distinct from the Mn. Consequently, the
Mn sites see a lower amplitude of the carrier wave-
function, and thus a lower effective exchange cou-
pling in the II-V1. This peaking of the impurity wave-
function at the Mn site in the ITI-V based DMS, leads
to a further enhancement of their 7¢ vis-a-vis the 11—
VI based DMS.

For both the II-VI and the III-V DMS, we find
that 7T¢ is enhanced by disorder. This can be under-
stood by recognizing that in a heavily disordered sys-
tem, nature is able to create global ordering by find-
ing the tortuous percolative pathway necessary when
the average coordination number is much below that
of any uniform lattice [26]. In III-V, the large com-
pensation adds an additional degree of freedom to
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the carriers, in the choice of amplitudes on differ-
ent sites, which again leads to wide variation in the
effective fields at different sites, and implies a per-
colative aspect to the magnetic ordering transition. In
mean field, we find the enhancement of 7¢ to be quite
large; however, preliminary MC results suggest lower
effects of disorder on 7¢ than given by the mean-field
approach [22].

Disorder effects on the electronic wave-functions
will lead to significant transport anomalies, especially
near the metal-insulator transition, as has been seen
experimentally [9]. It will also likely affect the nature
and amount of magnetic scattering of carriers injected
into the system. While the naive expectation is that
disorder should increase spin-flip scattering, it may
be significantly reduced for carriers near the Fermi
level. This is because we find that these states have
large amplitudes along the percolating backbone of
the system, where the Mn moments are magnetized
well above the average global magnetization. In this
regime, many standard models devised for transla-
tionally invariant systems (e.g., relationship of anoma-
lous Hall effect to bulk magnetization) may not be
applicable, and such interpretations should be used
with care.

One other approximation inherent in our work is
the assumption that electron and hole doping give rise
to Hamiltonians that are qualitatively similar, though
quantitatively different (holes have angular momen-
tum 3/2, while electrons have spin 1/2). This is what
is found for free holes [33]: although the more com-
plicated anisotropic wave-functions for holes lead to
quantitative differences, qualitatively the results are
similar, in that both systems lead to ferromagnetic or-
dering. Recently, however, since the Spintronics 2001
conference, it has been proposed [34] that spin—orbit
coupling can lead to effective spin—spin couplings that
are anisotropic in spin space, and the positional disor-
der effectively leads to random anisotropy. This could
lead to frustration effects not present in our model,
and if true, would need to be put in for hole doped
systems to achieve full understanding of magnetic or-
dering and carrier transport in DMS systems.

Finally, we discuss the applicability of our results
to actual III-V DMS in the regime of large 7c. While
our model is based on the insulating, low density limit,
how many of its features persist into the metallic phase
at higher densities and temperatures, is dependent on
the nature of the filled electronic states at tempera-
tures 7¢c and below. In the model we have studied, the
host valence band is completely neglected, and its in-
clusion is not expected to lead to qualitative changes,
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because it lies several hundred meV above the Fermi
level. However, this is a consequence of an impurity
band with a density of states that is characteristic of
a bandwidth of order hundred meV also. Should the
impurity band become much broader in the actual
system due to effects we have left out, it will likely
merge into the host valence band, and the states will
be strongly mixed. Nevertheless, the occupied states
for small filling (low Mn density and large compensa-
tion) would have significant effects of disorder. This,
in turn, implies that the anomalous behavior exhib-
ited by our model would be present, but with lower
magnitude than shown by our calculations. The clear-
est signature of these would likely come from local
probes, which would be able to determine the dis-
tribution of /ocal fields, and hence local density of
states at various sites. Such input into phenomeno-
logical models should provide a fruitful avenue for a
more in-depth study of the fascinating world of real
DMS, which offer both a significant promise in terms
of their applications in spintronics, and a challenge in
terms of their fundamental understanding.
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